Skip to content

abawchen/kaggle-rsna-pneumonia-detection-challenge

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

kaggle-rsna-pneumonia-detection-challenge

CNN References:

Keras Tutorial

  • How to Use the Keras Functional API for Deep Learning @2017-10-27

     from keras.models import Model
     from keras.layers import Input
     from keras.layers import Dense
     visible = Input(shape=(10,))
     hidden1 = Dense(10, activation='relu')(visible)
     hidden2 = Dense(20, activation='relu')(hidden1)
     hidden3 = Dense(10, activation='relu')(hidden2)
     output = Dense(1, activation='sigmoid')(hidden3)
     model = Model(inputs=visible, outputs=output)
     print(model.summary())
     Layer (type)                 Output Shape              Param #
     ===========================================================================
     input_1 (InputLayer)         (None, 10)                0
     ___________________________________________________________________________
     dense_1 (Dense)              (None, 10)                110 =(10+1)*10
     ___________________________________________________________________________
     dense_2 (Dense)              (None, 20)                220 =(10+1)*20
     ___________________________________________________________________________
     dense_3 (Dense)              (None, 10)                210 =(20+1)*10
     ___________________________________________________________________________
     dense_4 (Dense)              (None, 1)                 11  =(10+1)*1
     ===========================================================================
     Total params: 551
     Trainable params: 551
     Non-trainable params: 0
    
  • How to calculate the number of parameters for convolutional neural network?

     from keras.models import Model
     from keras.layers import Input
     from keras.layers import Dense
     from keras.layers.convolutional import Conv2D
     from keras.layers.pooling import MaxPooling2D
     visible = Input(shape=(64, 64, 1))
     # fitler num: 32, filter shape: (4, 4)
     conv1 = Conv2D(32, kernel_size=4, activation='relu')(visible)
     pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
     conv2 = Conv2D(16, kernel_size=4, activation='relu')(pool1)
     pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
     hidden1 = Dense(10, activation='relu')(pool2)
     output = Dense(1, activation='sigmoid')(hidden1)
     model = Model(inputs=visible, outputs=output)
     print(model.summary())
     Layer (type)                 Output Shape              Param #
     ===========================================================================
     input_1 (InputLayer)         (None, 64, 64, 1)         0
     ___________________________________________________________________________
     # filter number 32, size 4*4. Say k=32, m=4, n=4, c=1
     conv2d_1 (Conv2D)            (None, 61, 61, 32)        544  = (4*4*1+1)*32
                                         61=64-4+1                 (m*n*c+1)*k
     ___________________________________________________________________________
     max_pooling2d_1 (MaxPooling2 (None, 30, 30, 32)        0
                                         30=61/2
     ___________________________________________________________________________
     # filter number 16, size 4*4. Say k=16, m=4, n=4, c=32
     conv2d_2 (Conv2D)            (None, 27, 27, 16)        8208 = (4*4*32+1)*16
                                         27=30-4+1                 (m*n*c+1)*k
     ___________________________________________________________________________
     max_pooling2d_2 (MaxPooling2 (None, 13, 13, 16)        0
                                         13=27/2
     ___________________________________________________________________________
     dense_1 (Dense)              (None, 13, 13, 10)        170  = (16+1)*10
     ___________________________________________________________________________
     dense_2 (Dense)              (None, 13, 13, 1)         11
     ===========================================================================
     Total params: 8,933
     Trainable params: 8,933
     Non-trainable params: 0
    

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published