Skip to content

abhiksingla/UAV_obstacle_avoidance_controller

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UAV Obstacle Avoidance using Deep Recurrent Reinforcement Learning with Temporal Attention

The code is implemented in Tensorflow(version = 1.1.0) and Keras.

Requirements

The code is based on Python 2. Install dependency by running:

pip install --user -r requirements.txt

How to run

There are two types of DQN implementation with gpu: Keras and Tensorflow.
You can choose different implementation by altering line 15 in main.py

Train original DQN:

python main.py --task_name 'DQN'

Train Double DQN:

python main.py --ddqn --task_name 'Double_DQN'

Train Dueling DQN:

python main.py --net_mode=duel --task_name 'Dueling_DQN'

Train Recurrent DQN:

python main.py --num_frames 10 --recurrent --task_name 'Recurrent_DQN'

Train Recurrent Temporal Attention DQN: (Using dqn_tf_temporalAt.py by uncommenting line 18 in main.py)

python main.py --num_frames 10 --recurrent --a_t --selector --task_name 'TemporalAt_DQN'

Train Recurrent Spatial Attention DQN: (Using dqn_tf_spatialAt.py by uncommenting line 21 in main.py)

python main.py --num_frames 10 --recurrent --a_t --selector --task_name 'SpatialAt_DQN'

Test trained model (e.g. Spatial Attention DQN):

python main.py --num_frames 10 --recurrent --a_t --selector --test \
--load_network --load_network_path=PATH_TO_NET

Acknowledgement

This code repository is highly inspired from work of Rui Zhu et al link.

About

UAV Obstacle Avoidance using Deep Recurrent Reinforcement Learning with Temporal Attention

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages