Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 50 additions & 0 deletions GameTheoryProblem.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
// C++ program to find out maximum value from a
// given sequence of coins
#include <bits/stdc++.h>
using namespace std;

// Returns optimal value possible that a player can
// collect from an array of coins of size n. Note
// than n must be even
int optimalStrategyOfGame(int* arr, int n)
{
// Create a table to store solutions of subproblems
int table[n][n];

// Fill table using above recursive formula. Note
// that the table is filled in diagonal fashion (similar
// to http:// goo.gl/PQqoS), from diagonal elements to
// table[0][n-1] which is the result.
for (int gap = 0; gap < n; ++gap) {
for (int i = 0, j = gap; j < n; ++i, ++j) {

// Here x is value of F(i+2, j), y is F(i+1, j-1) and
// z is F(i, j-2) in above recursive formula
int x = ((i + 2) <= j) ? table[i + 2][j] : 0;
int y = ((i + 1) <= (j - 1)) ? table[i + 1][j - 1] : 0;
int z = (i <= (j - 2)) ? table[i][j - 2] : 0;

table[i][j] = max(arr[i] + min(x, y), arr[j] + min(y, z));
}
}

return table[0][n - 1];
}

// Driver program to test above function
int main()
{
int arr1[] = { 8, 15, 3, 7 };
int n = sizeof(arr1) / sizeof(arr1[0]);
printf("%d\n", optimalStrategyOfGame(arr1, n));

int arr2[] = { 2, 2, 2, 2 };
n = sizeof(arr2) / sizeof(arr2[0]);
printf("%d\n", optimalStrategyOfGame(arr2, n));

int arr3[] = { 20, 30, 2, 2, 2, 10 };
n = sizeof(arr3) / sizeof(arr3[0]);
printf("%d\n", optimalStrategyOfGame(arr3, n));

return 0;
}