-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
83 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
# | ||
# Cockcroft Headroom Plot - first written by github.com/adrianco in 2008, uploaded in 2020 and shared with Apache 2.0 license | ||
# | ||
chp <-function(throughput,response, q=0.95, qx=F, xl="Throughput",yl="Response",tl="Throughput Over Time", ml="Headroom Plot", fit=T, max=T, splits=0) { | ||
# remove zero throughput and response values | ||
nonzer <- (throughput != 0) & (response != 0) # array of true/false | ||
y <- response[nonzer] | ||
x <- throughput[nonzer] | ||
# remove outliers, keep response time points inside 95% by default | ||
if (q != 1.0) { | ||
quant <- (y < quantile(y,q)) | ||
# optionally trim throughput outliers as well | ||
if (qx) quant <- quant & (x < quantile(x, q)) | ||
x <- x[quant] | ||
y <- y[quant] | ||
} | ||
# make histograms and record end points for scaling | ||
xhist <- hist(x,plot=FALSE) | ||
yhist <- hist(y,plot=FALSE) | ||
xbf <- xhist$breaks[1] # first | ||
ybf <- yhist$breaks[1] # first | ||
xbl <- xhist$breaks[length(xhist$breaks)] # last | ||
ybl <- yhist$breaks[length(yhist$breaks)] # last | ||
xcl <- length(xhist$counts) # count length | ||
ycl <- length(yhist$counts) # count length | ||
xrange <- c(0.0,xbl) | ||
yrange <- c(0.0,ybl) | ||
xlen <- length(x) | ||
# make a multi-region layout | ||
nf <- layout(matrix(c(1,3,4,2),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE) | ||
layout.show(nf) | ||
# set plot margins for throughput histogram and plot it | ||
par(mar=c(0,4,3,0)) | ||
barplot(xhist$counts, axes=FALSE, | ||
xlim=c(xcl*0.00-xbf/((xbl-xbf)/(xcl-0.5)),xcl*1.00), | ||
ylim=c(0, max(xhist$counts)), space=0, main=ml) | ||
# set plot margins for response histogram and plot it sideways | ||
par(mar=c(5,0,0,1)) | ||
barplot(yhist$counts, axes=FALSE, xlim=c(0,max(yhist$counts)), | ||
ylim=c(ycl*0.00-ybf/((ybl-ybf)/(ycl-0.5)),ycl*1.00), | ||
space=0, horiz=TRUE) | ||
# set plot margins for time series plot | ||
par(mar=c(2.5,1.7,3,1)) | ||
plot(x, main=tl, cex.axis=0.8, cex.main=0.8, type="S") | ||
if (splits > 0) { | ||
step <- xlen/splits | ||
for(n in 0:(splits-1)) { | ||
lines((1+n*step):min((n+1)*step,xlen), x[(1+n*step):min((n+1)*step,xlen)], col=4+n) | ||
} | ||
} | ||
# set plot margins for main plot area | ||
par(mar=c(5,4,0,0)) | ||
plot(x, y, xlim=xrange, ylim=yrange, xlab=xl, ylab=yl, pch=20) | ||
if (max) { | ||
# max curve | ||
b <- xhist$breaks | ||
i <- b[2] - b[1] # interval | ||
maxl <- list(y[b[1] < x & x <= (b[1]+i)]) | ||
for(n in b[c(-1,-length(b))]) maxl <- c(maxl,list(y[n < x & x <= (n+i)])) | ||
#print(maxl) | ||
maxv <- unlist(lapply(maxl,max)) # apply max function to elements of list | ||
#print(maxv) | ||
#lines(xhist$mids,maxv,col=2) # join the dots | ||
#staircase plot showing the range for each max response | ||
lines(rep(b,1,each=2)[2:(2*length(maxv)+1)],rep(maxv,1,each=2),col=3) | ||
|
||
} | ||
if (fit) { | ||
# fit curve, weighted to predict high throughput | ||
# create persistent chpfit object using <<- | ||
chpfit <- glm(y ~ x, inverse.gaussian, weights=as.numeric(x)) | ||
# add fitted values to plot, sorted by throughput | ||
lines(x[order(x)],chpfit$fitted.values[order(x)],col=2) | ||
} | ||
if (splits > 0) { | ||
step <- xlen/splits | ||
for(n in 0:(splits-1)) { | ||
Sys.sleep(1) | ||
points(x[(1+n*step):min((n+1)*step,xlen)],y[(1+n*step):min((n+1)*step,xlen)], xlim=xrange, ylim=yrange, col=4+n) | ||
} | ||
} | ||
} | ||
|