Skip to content

akalai/beyond-perturbations-learning-guarantees

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Beyond Perturbations: Learning Guarantees with Arbitrary Adversarial Test Examples

Below are instructions to reproduce experiments in our paper: https://arxiv.org/abs/2007.05145

Installation and usage

Requirements: PyTorch v1.0 or higher, Scikit-Learn, and emnist dataset package, which can be installed with:

pip install emnist

Running Random Forest Experiments

The random forest experiments are in the file Random Forest Experiments.ipynb. Simply run the notebook to download the data and recreate the experiments.

Running Neural Network Experiments

Choose either Q=EMNIST-Mix, or Q=EMNIST-Adv.

To train a classifer:

python train.py --resume --task classifier --dataset EMNIST-Mix --arch MnistNet --epochs 85 --num_classes 8

To train a distinguisher:

python train.py --resume --task distinguisher --dataset EMNIST-Mix --arch MnistNet --epochs 85 --num_classes 8

To generate tradeoff plots:

python evaluate.py --epochs 85 --dataset EMNIST-Mix --num_classes 8 --arch MnistNet

Acknowledgement

This code builds on the code provided in the following repositories: https://github.com/yaodongyu/TRADES https://github.com/pytorch/examples/blob/master/mnist/main.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 57.2%
  • Python 42.8%