-
Install the package
pip install -e .
-
Download NER-Model from Kaggle
https://www.kaggle.com/alexeykarnachev/google-qa-ner -
Prepare dataset
python scripts/prepare_dataset.py --seed=228 --train_df_file=data/google-quest-challenge/train.csv --test_df_file=data/google-quest-challenge/test.csv --tokenizer_cls=RobertaTokenizer --tokenizer_path=roberta-large --n_splits=7 --datasets_root=data/datasets/ --crop_strategies=both --dataset_cls=BiDataset --process_math --ner_model_dir=data/ner/code/bert_base_cased
--ner_model_dir is a path to downloaded NER model (from previous step) -
Run experiment training
cd scripts
python run_encoder_experiment.py --config_path=../configs/base_config.yaml
-
Wait the training process end ...
-
Archive the experiment directory
cd experiments
tar zcvf <EXPERIMENT_DIR>.tar.gz <EXPERIMENT_DIR>
-
Send it to your kaggle datasets storage
-
Now, you can inference the model in a kernel
https://www.kaggle.com/alexeykarnachev/kernel1864bcfc13
For this, attach the following datasets to the kernel:
https://www.kaggle.com/alexeykarnachev/kaggle-google-qa-labeling (this package)
https://www.kaggle.com/alexeykarnachev/google-qa-ner (NER model)
https://www.kaggle.com/alexeykarnachev/transformersdependencies (transformers lib and dependencies)
Also, attach trained experiment to the kernel
Uncomment all lines in the kernel and replace the EXPERIMENT_NAME placeholder with your experiment name
-
Notifications
You must be signed in to change notification settings - Fork 3
alexeykarnachev/kaggle_google_qa_labeling
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
41th place of the Kaggle Google QA Labeling competition
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published