Skip to content

A python chatbot framework with Natural Language Understanding and Artificial Intelligence.

License

Notifications You must be signed in to change notification settings

alfredfrancis/ai-chatbot-framework

Repository files navigation

Join the chat at https://gitter.im/ai-chatbot-framework/Lobby Build Status

An AI Chatbot framework built in Python

AI Chatbot Framework is an AI powered conversational dialog interface built in Python. With this tool, it’s easy to create Natural Language conversational scenarios with no coding efforts whatsoever. The smooth UI makes it effortless to create and train conversations to the bot. AI Chatbot Framework can live on any channel of your choice (such as Messenger, Slack etc.) by integrating it’s API with that platform.

You don’t need to be an expert at artificial intelligence to create an awesome chatbot that has AI capabilities. With this boilerplate project you can create an AI powered chatting machine in no time. Since this is a hobby project, there could be numerous bugs, so contributions through pull requests are welcome!

Index

Installation

Using docker-compose (recommended)

docker-compose up -d

Open http://localhost:8080/

Using Helm

helm dep update helm/ai-chatbot-framework

helm upgrade --install --create-namespace -n ai-chatbot-framework ai-chatbot-framework helm/ai-chatbot-framework

# port forward to local (optional)
kubectl port-forward --namespace=ai-chatbot-framework service/ingress-nginx-controller 8080:80

Open http://localhost:8080/

Using Docker

# pull docker images
docker pull alfredfrancis/ai-chatbot-framework:latest

# start a mongodb server
docker run --name mongodb -d mongo:3.6

# start the container
docker run -d --name=ai-chatbot-framework --link mongodb:mongodb -e="APPLICATION_ENV=Production" alfredfrancis/ai-chatbot-framework:latest

# setup default intents
docker exec -it ai-chatbot-framework flask --app=manage  manage  migrate 

Open http://localhost/

without docker

  • Setup Virtualenv and install python requirements
virtualenv -p python3 venv
source venv/bin/activate
pip install -r requirements.txt
flask --app=manage  manage  migrate 
flask run --host=127.0.0.1 --debug --port=8080
  • Production
APPLICATION_ENV="Production" gunicorn --bind 0.0.0.0:8080 run:app

Heroku

Deploy

  • add your dev/production configurations in config.py

Development

Start development server

docker-compose -f docker-compose.dev.yml up -d

Open http://localhost:8080/

Update Frontend Dist

  • Run Development mode
cd frontend
npm install
ng serve
  • Update Production build
cd frontend
ng build --prod --optimize
cp dist/ ../app/static/

Screenshots

Tutorial

Checkout this basic tutorial on youtube,

Coming Soon