-
Notifications
You must be signed in to change notification settings - Fork 75
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
1D convolutional filter using global memory
- Loading branch information
1 parent
244ffa6
commit 15a56e9
Showing
3 changed files
with
226 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
# | ||
# Copyright 2023 Erik Zenker, Benjamin Worpitz, Jan Stephan | ||
# SPDX-License-Identifier: ISC | ||
# | ||
|
||
################################################################################ | ||
# Required CMake version. | ||
|
||
cmake_minimum_required(VERSION 3.22) | ||
|
||
set_property(GLOBAL PROPERTY USE_FOLDERS ON) | ||
|
||
################################################################################ | ||
# Project. | ||
|
||
set(_TARGET_NAME convolution1D) | ||
|
||
project(${_TARGET_NAME} LANGUAGES CXX) | ||
|
||
#------------------------------------------------------------------------------- | ||
# Find alpaka. | ||
|
||
if(NOT TARGET alpaka::alpaka) | ||
option(alpaka_USE_SOURCE_TREE "Use alpaka's source tree instead of an alpaka installation" OFF) | ||
|
||
if(alpaka_USE_SOURCE_TREE) | ||
# Don't build the examples recursively | ||
set(alpaka_BUILD_EXAMPLES OFF) | ||
add_subdirectory("${CMAKE_CURRENT_LIST_DIR}/../.." "${CMAKE_BINARY_DIR}/alpaka") | ||
else() | ||
find_package(alpaka REQUIRED) | ||
endif() | ||
endif() | ||
|
||
#------------------------------------------------------------------------------- | ||
# Add executable. | ||
|
||
alpaka_add_executable( | ||
${_TARGET_NAME} | ||
src/convolution1D.cpp) | ||
target_link_libraries( | ||
${_TARGET_NAME} | ||
PUBLIC alpaka::alpaka) | ||
|
||
set_target_properties(${_TARGET_NAME} PROPERTIES FOLDER example) | ||
|
||
add_test(NAME ${_TARGET_NAME} COMMAND ${_TARGET_NAME}) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
/* Copyright 2023 Bernhard Manfred Gruber, Simeon Ehrig, Rene Widera, Mehmet Yusufoglu. | ||
* SPDX-License-Identifier: ISC | ||
*/ | ||
|
||
#include <alpaka/alpaka.hpp> | ||
#include <alpaka/example/ExampleDefaultAcc.hpp> | ||
|
||
#include <cmath> | ||
#include <iomanip> | ||
#include <iostream> | ||
#include <limits> | ||
#include <type_traits> | ||
|
||
//! Convolution Example | ||
//! | ||
//! 1D convolution example: Creates two 1D arrays, applies convolution filter. | ||
//! Array sizes are hardcoded. | ||
//! | ||
|
||
/** | ||
* @brief The ConvolutionKernel function-object | ||
* Calculates 1D convolution using input and filter arrays. | ||
*/ | ||
struct ConvolutionKernel | ||
{ | ||
/** @brief Main convolution code | ||
* @param Accelerator | ||
* @param Input array, first input of convolution integral | ||
* @param Filter array, second input of convolution integral | ||
* @param Empty output array to be filled | ||
* @param Input array size | ||
* @param Filter size | ||
*/ | ||
template<typename TAcc, typename TElem> | ||
ALPAKA_FN_ACC auto operator()( | ||
TAcc const& acc, | ||
TElem const* const input, | ||
TElem const* const filter, | ||
TElem* const output, | ||
const std::size_t inputSize, | ||
const std::size_t filterSize) const -> void | ||
{ | ||
auto const globalThreadIdxX = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[0]; | ||
|
||
// Since the kernel is launched 1-D calculating linearizedGlobalThreadIdx line is unnecessary. | ||
// globalThreadIdx[0] can be used to map all the threads. | ||
if(globalThreadIdxX < inputSize) | ||
{ | ||
int32_t const halfFilterSize = filterSize / 2; | ||
TElem result = 0.0f; | ||
// Calculate sum of multiplications of corresponding elements | ||
auto const start | ||
= static_cast<int32_t>(std::max(static_cast<int32_t>(globalThreadIdxX) - halfFilterSize, 0)); | ||
auto const stop = std::min(globalThreadIdxX + halfFilterSize, inputSize - 1); | ||
for(int32_t i = start; i <= stop; ++i) | ||
result += input[i] * filter[i + halfFilterSize - static_cast<int32_t>(globalThreadIdxX)]; | ||
output[globalThreadIdxX] = result; | ||
} | ||
} | ||
}; | ||
|
||
auto FuzzyEqual(float a, float b) -> bool | ||
{ | ||
return std::fabs(a - b) < std::numeric_limits<float>::epsilon() * 10.0f; | ||
} | ||
|
||
auto main() -> int | ||
{ | ||
// Size of 1D arrays to be used in convolution integral | ||
// Here instead of "convolution kernel" the term "filter" is used because kernel has a different meaning in GPU | ||
// programming. Secondly filter array is not reversed. Implemented like a convolutional layer in CNN. | ||
constexpr size_t filterSize = 3; | ||
using DataType = float; | ||
constexpr size_t inputSize = 8; | ||
constexpr std::array<DataType, inputSize> expectedOutput = {0.8f, 1.4f, 2.0f, 2.6f, 3.2f, 3.8f, 4.4f, 2.3f}; | ||
|
||
// Define the index domain | ||
using Dim = alpaka::DimInt<1u>; | ||
// Index type | ||
using Idx = std::size_t; | ||
|
||
// Define the accelerator | ||
using DevAcc = alpaka::ExampleDefaultAcc<Dim, Idx>; | ||
using QueueProperty = alpaka::Blocking; | ||
using QueueAcc = alpaka::Queue<DevAcc, QueueProperty>; | ||
using BufAcc = alpaka::Buf<DevAcc, DataType, Dim, Idx>; | ||
|
||
std::cout << "Using alpaka accelerator: " << alpaka::getAccName<DevAcc>() << '\n'; | ||
|
||
auto const platformHost = alpaka::PlatformCpu{}; | ||
auto const devHost = alpaka::getDevByIdx(platformHost, 0); | ||
|
||
// Select a device | ||
auto const platformAcc = alpaka::Platform<DevAcc>{}; | ||
auto const devAcc = alpaka::getDevByIdx(platformAcc, 0); | ||
|
||
// Create a queue on the device | ||
QueueAcc queue(devAcc); | ||
|
||
// Allocate memory host input | ||
auto hostInputMemory = alpaka::allocBuf<DataType, Idx>(devHost, inputSize); | ||
|
||
// Fill array with data | ||
for(size_t i = 0; i < inputSize; i++) | ||
hostInputMemory[i] = static_cast<DataType>(i + 1); | ||
|
||
// Allocate memory host filter | ||
auto hostFilterMemory = alpaka::allocBuf<DataType, Idx>(devHost, filterSize); | ||
|
||
// Fill array with any data | ||
for(size_t i = 0; i < filterSize; i++) | ||
hostFilterMemory[i] = static_cast<DataType>(i + 1) / 10.0f; | ||
|
||
// Allocate memory in device | ||
BufAcc inputDeviceMemory = alpaka::allocBuf<DataType, Idx>(devAcc, inputSize); | ||
BufAcc filterDeviceMemory = alpaka::allocBuf<DataType, Idx>(devAcc, filterSize); | ||
BufAcc outputDeviceMemory = alpaka::allocBuf<DataType, Idx>(devAcc, static_cast<Idx>(inputSize)); | ||
|
||
// Copy input and filter (convolution kernel array) from host to device | ||
alpaka::memcpy(queue, inputDeviceMemory, hostInputMemory, inputSize); | ||
alpaka::memcpy(queue, filterDeviceMemory, hostFilterMemory, filterSize); | ||
// Make sure memcpy finished. | ||
alpaka::wait(queue); | ||
using Vec = alpaka::Vec<Dim, Idx>; | ||
using WorkDiv = alpaka::WorkDivMembers<Dim, Idx>; | ||
|
||
auto const elementsPerThread = Vec::all(static_cast<Idx>(1)); | ||
// Grid size | ||
auto const threadsPerGrid = inputSize; | ||
WorkDiv const workDiv = alpaka::getValidWorkDiv<DevAcc>( | ||
devAcc, | ||
threadsPerGrid, | ||
elementsPerThread, | ||
false, | ||
alpaka::GridBlockExtentSubDivRestrictions::Unrestricted); | ||
|
||
// Instantiate the kernel (gpu code) function-object | ||
ConvolutionKernel convolutionKernel; | ||
|
||
// Native pointers needed for the kernel execution function | ||
DataType* nativeFilterDeviceMemory = alpaka::getPtrNative(filterDeviceMemory); | ||
DataType* nativeInputDeviceMemory = alpaka::getPtrNative(inputDeviceMemory); | ||
DataType* nativeOutputDeviceMemory = alpaka::getPtrNative(outputDeviceMemory); | ||
|
||
// Run the kernel | ||
alpaka::exec<DevAcc>( | ||
queue, | ||
workDiv, | ||
convolutionKernel, | ||
nativeInputDeviceMemory, | ||
nativeFilterDeviceMemory, | ||
nativeOutputDeviceMemory, | ||
inputSize, | ||
filterSize); | ||
|
||
// Allocate memory on host | ||
auto resultGpuHost = alpaka::allocBuf<DataType, Idx>(devHost, inputSize); | ||
// Copy from device memory to host | ||
alpaka::memcpy(queue, resultGpuHost, outputDeviceMemory, inputSize); | ||
alpaka::wait(queue); | ||
|
||
bool allEqual{true}; | ||
// Print result array at the host | ||
for(size_t i{0}; i < inputSize; i++) | ||
{ | ||
std::cout << "output[" << i << "]:" << std::setprecision(3) << resultGpuHost[i] << "\n"; | ||
// Compare with the reference output | ||
bool fuzzyEqual = FuzzyEqual(resultGpuHost[i], expectedOutput[i]); | ||
allEqual = allEqual && fuzzyEqual; | ||
} | ||
if(!allEqual) | ||
{ | ||
std::cout << "Error: Some convolution results doesn't match!\n"; | ||
return EXIT_FAILURE; | ||
} | ||
std::cout << "All results are correct!\n"; | ||
return EXIT_SUCCESS; | ||
} |