Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create Decision Tree and Neural Networks #30

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
116 changes: 116 additions & 0 deletions Decision Tree and Neural Networks
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
from sklearn.tree import DecisionTreeRegressor
tree_reg = DecisionTreeRegressor(min_samples_leaf=10, max_depth=5)
tree_reg.fit(train_x, train_target)
# Train RMSE for Decission Tree Regressor
train_pred_dtr = tree_reg.predict(train_x)
train_mse_dtr = mean_squared_error(train_target, train_pred_dtr)
train_rmse_dtr = np.sqrt(train_mse_dtr)
print(f'Train RMSE for Decission Tree Regressor: {train_rmse_dtr}')

# Test RMSE for Decission Tree Regressor
test_pred_dtr = tree_reg.predict(test_x)
test_mse_dtr = mean_squared_error(test_target, test_pred_dtr)
test_rmse_dtr = np.sqrt(test_mse_dtr)
print(f'Test RMSE for Decission Tree Regressor: {test_rmse_dtr}')

from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import SGDRegressor
from sklearn.svm import SVR
from sklearn.ensemble import VotingRegressor

dtree_reg = DecisionTreeRegressor(max_depth=25)
svm_reg = SVR(kernel="rbf", C=10, epsilon=0.03, gamma='scale')
sgd_reg = SGDRegressor( max_iter=13000, tol=1e-3)

voting_reg = VotingRegressor(
estimators=[
('dt', dtree_reg),
('svr', svm_reg),
('sgd', sgd_reg)]
)

voting_reg.fit(train_x, train_target)
# Train RMSE for Voting Regressor
train_pred_vr = voting_reg.predict(train_x)
train_mse_vr = mean_squared_error(train_target, train_pred_vr)
train_rmse_vr = np.sqrt(train_mse_vr)
print(f'Train RMSE for Voting Regressor: {train_rmse_vr}')
# Test RMSE for Voting Regressor
test_pred_vr = voting_reg.predict(test_x)
test_mse_vr = mean_squared_error(test_target, test_pred_vr)
test_rmse_vr = np.sqrt(test_mse_vr)
print(f'Test RMSE for Voting Regressor: {test_rmse_vr}')
#### GradientBoosting
from sklearn.ensemble import GradientBoostingRegressor

gb_reg = GradientBoostingRegressor(max_depth=3, n_estimators=150, learning_rate=0.1)
gb_reg.fit(train_x, train_target)
# Train RMSE for Gradient Boosting Regressor
train_pred_gbr = gb_reg.predict(train_x)
train_mse_gbr = mean_squared_error(train_target, train_pred_gbr)
train_rmse_gbr = np.sqrt(train_mse_gbr)
print(f'Train RMSE for Gradient Boosting Regressor: {train_rmse_gbr}')
# Test RMSE for Gradient Boosting Regressor
test_pred_gbr = gb_reg.predict(test_x)
test_mse_gbr = mean_squared_error(test_target, test_pred_gbr)
test_rmse_gbr = np.sqrt(test_mse_gbr)
print(f'Test RMSE for Gradient Boosting Regressor: {test_rmse_gbr}')
from sklearn.neural_network import MLPRegressor

mlp_reg = MLPRegressor(
hidden_layer_sizes=(200, 200, 200, 200, 200),
max_iter=1000,
early_stopping=True,
alpha = 0.1
)
mlp_reg.fit(train_x, train_target)
# Train RMSE
train_pred_nnr = mlp_reg.predict(train_x)
train_mse_nnr = mean_squared_error(train_target, train_pred_nnr)
train_rmse_nnr = np.sqrt(train_mse_nnr)
print(f'Train RMSE for Neural Network Regressor: {train_rmse_nnr}')
# Test RMSE
test_pred_nnr = mlp_reg.predict(test_x)
test_mse_nnr = mean_squared_error(test_target, test_pred_nnr)
test_rmse_nnr = np.sqrt(test_mse_nnr)
print(f'Test RMSE for Neural Network Regressor: {test_rmse_nnr}')
# Randomized Grid search on Decision Tree Regressor
from sklearn.model_selection import RandomizedSearchCV

param_grid = [
{
'min_samples_leaf': np.arange(10, 30),
'max_depth': np.arange(10,30)
}
]

tree_reg = DecisionTreeRegressor()

grid_search = RandomizedSearchCV(
tree_reg, param_grid, cv=5, n_iter=10,
scoring='neg_mean_squared_error',
verbose=1,return_train_score=True
)

grid_search.fit(train_x, train_target)
cvres = grid_search.cv_results_

for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
print(np.sqrt(-mean_score), params)

print(
"grid_search.best_params_: ", grid_search.best_params_,
"\ngrid_search.best_estimator_: ", grid_search.best_estimator_,
)

# Train RMSE for Randomized Grid search on Decision Tree Regressor
train_pred_rgs = grid_search.best_estimator_.predict(train_x)
train_mse_rgs = mean_squared_error(train_target, train_pred_rgs)
train_rmse_rgs = np.sqrt(train_mse_rgs)
print(f'Train RMSE for Randomized Grid search on Decision Tree Regressor: {train_rmse_rgs}')

# Test RMSE for Randomized Grid search on Decision Tree Regressor
test_pred_rgs = grid_search.best_estimator_.predict(test_x)
test_mse_rgs = mean_squared_error(test_target, test_pred_rgs)
test_rmse_rgs = np.sqrt(test_mse_rgs)
print(f'Test RMSE for Randomized Grid search on Decision Tree Regressor: {test_rmse_rgs}')