Skip to content

Paper list for papers that relate artifitial neural networks with human visual perception

Notifications You must be signed in to change notification settings

alviur/awesome-perception-with-neural-networks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 

Repository files navigation

awesome-perception-with-neural-networks

Paper list for papers that relate artifitial neural networks with human visual perception. Work-in-progress.

Feel free to suggest relevant papers in the following format.

Table of Contents

  1. What are lightness illusions and why do we see them?
    Corney, D., & Lotto, R. B PLoS computational biology 2007 paper
    Note: first paper; lightness/brightness illusions;

  2. Convolutional Neural Networks Can Be Deceived by Visual Illusions
    Gomez-Villa, A., Martin, A., Vazquez-Corral, J., & Bertalmio, M. CVPR 2019 paper
    Note: lightness/brightness & color illusions;

  3. Color illusions also deceive CNNs for low-level vision tasks: Analysis and implications
    Gomez-Villa, A., Martín, A., Vazquez-Corral, J., Bertalmío, M., & Malo, J. Vision Research 2020 paper
    Note: lightness/brightness & color illusions;

  4. Grounding Visual Illusions in Language: Do Vision-Language Models Perceive Illusions Like Humans?
    Zhang, Y., Pan, J., Yuchen, Z., Pan, R. & Chai, J. EMNLP 2023 paper
    Note: lightness/brightness,color, geometric, and perspective illusions;

  5. Is clip fooled by optical illusions? Ngo, J., Sankaranarayanan, S., & Isola, P. Tiny paper at ICLR 2023 paper
    Note: lightness/brightness,color, geometric, and perspective illusions;

  6. Decoding Illusion Perception: A Comparative Analysis of Deep Neural Networks in the Müller-Lyer Illusion Zhang, H., Yoshida, S., & Li, Z. SMC 2023 paper
    Note:

  7. Exploring Deep Neural Networks in Simulating Human Vision through Five Optical Illusions Zhang, H., & Yoshida, S. Applied Sciences 2024 paper
    Note:

  8. Evaluating Model Perception of Color Illusions in Photorealistic Scenes Mao, L., Tang, Z., & Suhr, A. arXiv preprint 2024 paper
    Note:

  9. The Art of Deception: Color Visual Illusions and Diffusion Models Gomez-Villa, A., Wang, K., Parraga, A. C., Twardowski, B., Malo, J., Vazquez-Corral, J., & van de Weijer, J. arXiv preprint 2024 paper
    Note:

  10. Deep learning models for perception of brightness related illusions Mukherjee, A., Paul, A., & Ghosh, K. Applied Intelligence 2024 paper
    Note: Shape/contour illusions

  11. Challenging deep learning models with image distortion based on the abutting grating illusion Fan, J., & Zeng, Y. Patterns 2023 paper
    Note: Shape/contour illusions

  12. A machine learning model perceiving brightness optical illusions: Quantitative evaluation with psychophysical data Kubota, Y., Hiyama, A., & Inami, M. Augmented Humans International Conference 2021 paper
    Note:

  13. In the shadow, Neural Networks tricked by visual illusions Zeng, Z. Master of science thesis 2024 paper
    Note: 3D scene reconstruction model can be deceived by shading illusions.

  14. Studying Geometric Optical Illusions through the Lens of a Convolutional Neural Network LaBerge, N. CMC Senior Theses 2019 paper
    Note:

  15. Neural Networks Trained on Natural Scenes Exhibit Gestalt Closure Kim, B., Reif, E., Wattenberg, M. et al. Comput Brain Behav 2021 paper
    Note:

  16. Shared visual illusions between humans and artificial neural networks Benjamin, A., Qiu, C., Zhang, L. Q., Kording, K., & Stocker, A. Conference on Cognitive Computational Neuroscience 2019 paper
    Note:

  17. ImageNet-trained deep neural networks exhibit illusion-like response to the Scintillating grid Sun, E. D., & Dekel, R. Journal of Vision 2021 paper
    Note:

  18. Exploring perceptual illusions in deep neural networks Ward, E. J. Journal of Vision 2019 paper
    Note:

  1. On the synthesis of visual illusions using deep generative models
    Gomez-Villa, A., Martín, A., Vazquez-Corral, J., Bertalmío, M., & Malo, J. JOV 2022. paper
    Note: lightness/brightness & color illusions;

  2. Color Visual Illusions: A Statistics-based Computational Model
    Hirsch, E., & Tal, A. (n.d.) NeurIPS 2020. paper
    Note: lightness/brightness & color illusions;

  3. Motion illusion-like patterns extracted from photo and art images using predictive deep neural networks
    Kobayashi, T., Kitaoka, A., Kosaka, M., Tanaka, K., & Watanabe, E. Scientific Reports 2020. paper
    Note: Motion illusions;

  4. Evolutionary Generation of Visual Motion Illusions
    Sinapayen, L., & Watanabe, E. arXiv 2021 paper
    Note: Motion illusions;

  5. Visual anagrams: Generating multi-view optical illusions with diffusion models
    Geng, D., Park, I., & Owens, A. CVPR 2024 paper
    Note: Motion illusions;

  1. Optical illusions images dataset
    Williams, R. M., & Yampolskiy, R. V. INSAM Journal of Contemporary Music, Art and Technology 2019 paper
    Note:

  2. IllusionVQA: A Challenging Optical Illusion Dataset for Vision Language Models
    Shahgir, H. S., Sayeed, K. S., Bhattacharjee, A., Ahmad, W. U., Dong, Y., & Shahriyar, R. COLM 2024 paper
    Note:

  3. BRI3L: A Brightness Illusion Image Dataset for Identification and Localization of Regions of Illusory Perception.
    Roy, A., Roy, A., Mitra, S., & Ghosh, K. ICIP 2024 paper
    Note:

  4. IllusionBench: A Large-scale and Comprehensive Benchmark for Visual Illusion Understanding in Vision-Language Models
    Zhang, Y., Zhang, Z., Wei, X., Liu, X., Zhai, G., & Min, X. arXiv preprint 2025 paper
    Note:

  1. What do deep neural networks tell us about biological vision?
    Heinke, D., Leonardis, A., & Leek, E. C. Vision Research 2022 paper
    Note:

  2. Gloss perception: Searching for a deep neural network that behaves like humans
    Prokott, K. E., Tamura, H., & Fleming, R. W. Journal of Vision 2021 paper
    Note:

  3. How convolutional neural network architecture biases learned opponency and color tuning
    Harris, E., Mihai, D., & Hare, J. Neural Computation 2021 paper
    Note:

  4. Deep Learning Networks and Visual Perception
    Lindsay, G. W., & Serre, T. Oxford Research Encyclopedia of Psychology 2021 paper
    Note:

  5. Qualitative similarities and differences in visual object representations between brains and deep networks
    Jacob, G., Pramod, R. T., Katti, H., & Arun, S. P. Nature communications 2021 paper
    Note:

  6. Deep neural networks for modeling visual perceptual learning
    Wenliang, L. K., & Seitz, A. R. Journal of Neuroscience 2018 paper
    Note:

  1. A comparative biology approach to DNN modeling of vision: A focus on differences, not similarities
    Lonnqvist, B., Bornet, A., Doerig, A., & Herzog, M. H. Journal of vision 2021 paper
    Note:

  2. Deep problems with neural network models of human vision
    Bowers, J. S., Malhotra, G., Dujmović, M., Montero, M. L., Tsvetkov, C., Biscione, V., ... & Blything, R. Behavioral and Brain Sciences 2023 paper
    Note:

  3. Generalisation in humans and deep neural networks
    Geirhos, R., Temme, C. R., Rauber, J., Schütt, H. H., Bethge, M., & Wichmann, F. A. NeurIPS 2018 paper
    Note:

  4. Clarifying status of DNNs as models of human vision
    Bowers, J. S., Malhotra, G., Dujmović, M., Montero, M. L., Tsvetkov, C., Biscione, V., ... & Blything, R. Behavioral and Brain Sciences 2023 paper
    Note:

  5. Inconsistent illusory motion in predictive coding deep neural networks.
    Kirubeswaran, O. R., & Storrs, K. R. Vision Research 2023 paper Note:

  6. Five points to check when comparing visual perception in humans and machines
    Funke, C. M., Borowski, J., Stosio, K., Brendel, W., Wallis, T. S., & Bethge, M. Journal of Vision 2021 paper Note:

  7. Are deep neural networks adequate behavioral models of human visual perception?
    Wichmann, F. A., & Geirhos, R. Annual Review of Vision Science 2023 paper Note:

  8. Deep learning models fail to capture the configural nature of human shape perception
    Baker, N., & Elder, J. H. Iscience 2022 paper Note:

  1. Psychophysics may be the game-changer for deep neural networks (DNNs) to imitate the human vision.
    Chandran, K. S., Paul, A. M., Paul, A., & Ghosh, K. Behavioral and Brain Sciences 2023 paper Note:

  2. Informing Machine Perception With Psychophysics
    Dulay, J., Poltoratski, S., Hartmann, T. S., Anthony, S. E., & Scheirer, W. J. Proceedings of the IEEE 2024 paper Note:

  3. MindSet: Vision. A toolbox for testing DNNs on key psychological experiments
    Biscione, V., Yin, D., Malhotra, G., Dujmovic, M., Montero, M. L., Puebla, G., ... & Bowers, J. S. arXiv preprint 2024 paper Note:

  4. Artificial perception meets psychophysics, revealing a fundamental law of illusory motion
    Kobayashi, T., & Watanabe, E. arXiv preprint 2021 paper Note:

  1. Harmonizing the object recognition strategies of deep neural networks with humans
    Fel, T., Rodriguez Rodriguez, I. F., Linsley, D., & Serre, T. NeurIPS 2022 paper Note:

  2. Recurrent neural circuits for contour detection
    Linsley, Drew, Junkyung Kim, Alekh Ashok, and Thomas Serre ICLR 2020 paper Note:

  3. Ecological Data and Objectives for Human Alignment
    Nagaraj, Akash, Alekh Karkada Ashok, Drew Linsley, Francis E. Lewis, Peisen Zhou, and Thomas Serre ccneuro 2024 paper Note:

  4. CYBORG: Blending human saliency into the loss improves deep learning-based synthetic face detection
    Boyd, A., Tinsley, P., Bowyer, K. W., & Czajka, A. WACV 2023 paper Note:

  5. Exploring Primitive Visual Measurement Understanding and the Role of Output Format in Learning in Vision-Language Models
    Ankit Yadav, Lingqiao Liu, Yuankai Qi, Arxiv preprint 2025 paper Note:

  6. Can We Talk Models Into Seeing the World Differently?
    Paul Gavrikov and Jovita Lukasik and Steffen Jung and Robert Geirhos and Muhammad Jehanzeb Mirza and Margret Keuper and Janis Keuper, ICLR 2025 paper Note:

About

Paper list for papers that relate artifitial neural networks with human visual perception

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published