Skip to content
Open
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
267 changes: 267 additions & 0 deletions python/pyspark/interchange.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,267 @@
import dataclasses
from typing import Iterable, Optional, Iterator, Any, Tuple
import pyarrow
from pyarrow.interchange.column import (
DtypeKind,
_PyArrowColumn,
ColumnBuffers,
ColumnNullType,
CategoricalDescription,
)
from pyarrow.interchange.dataframe import _PyArrowDataFrame

import pyspark.sql
from pyspark.sql.types import StructType, StructField, BinaryType
from pyspark.sql.pandas.types import to_arrow_schema


def _get_arrow_array_partition_stream(df: pyspark.sql.DataFrame) -> Iterator[pyarrow.RecordBatch]:
"""Return all the partitions as Arrow arrays in an Iterator."""
# We will be using mapInArrow to convert each partition to Arrow RecordBatches.
# The return type of the function will be a single binary column containing
# the serialized RecordBatch in Arrow IPC format.
binary_schema = StructType(
[StructField("interchange_arrow_bytes", BinaryType(), nullable=False)]
)

def batch_to_bytes_iter(batch_iter):
"""
A generator function that converts RecordBatches to serialized Arrow IPC format.

Spark sends each partition as an iterator of RecordBatches. In order to return
the entire partition as a stream of Arrow RecordBatches, we need to serialize
each RecordBatch to Arrow IPC format and yield it as a single binary blob.
"""
# The size of the batch can be controlled by the Spark config
# `spark.sql.execution.arrow.maxRecordsPerBatch`.
for arrow_batch in batch_iter:
# We create an in-memory byte stream to hold the serialized batch
sink = pyarrow.BufferOutputStream()
# Write the batch to the stream using Arrow IPC format
with pyarrow.ipc.new_stream(sink, arrow_batch.schema) as writer:
writer.write_batch(arrow_batch)
buf = sink.getvalue().to_pybytes()
# Wrap the bytes in a new 1-row, 1-column RecordBatch to satisfy mapInArrow return signature
# This serializes the whole batch into a single pyarrow serialized cell.
storage_arr = pyarrow.array([buf])
yield pyarrow.RecordBatch.from_arrays([storage_arr], names=["interchange_arrow_bytes"])

# Convert all partitions to Arrow RecordBatches and map to binary blobs.
byte_df = df.mapInArrow(batch_to_bytes_iter, binary_schema)

# A row is actually a batch of data in Arrow IPC format. Fetch the batches one by one.
for row in byte_df.toLocalIterator():
with pyarrow.ipc.open_stream(row.interchange_arrow_bytes) as reader:
for batch in reader:
# Each batch corresponds to a chunk of data in the partition.
yield batch


class SparkArrowCStreamer:
"""
A class that implements that __arrow_c_stream__ protocol for Spark partitions.

This class is implemented in a way that allows consumers to consume each partition
one at a time without materializing all partitions at once on the driver side.
"""

def __init__(self, df: pyspark.sql.DataFrame):
self._df = df
self._schema = to_arrow_schema(df.schema)

def __arrow_c_stream__(self, requested_schema=None):
"""
Return the Arrow C stream for the dataframe partitions.
"""
reader: pyarrow.RecordBatchReader = pyarrow.RecordBatchReader.from_batches(
self._schema, _get_arrow_array_partition_stream(self._df)
)
return reader.__arrow_c_stream__(requested_schema=requested_schema)


@dataclasses.dataclass(frozen=True)
class SparkInterchangeColumn(_PyArrowColumn):
"""
A class that conforms to the dataframe interchange protocol column interface.

This class leverages the Arrow-based dataframe interchange protocol by returning
Spark partitions (chunks) in Arrow's dataframe interchange format.
"""

_spark_dataframe: "pyspark.sql.DataFrame"
_spark_column: "pyspark.sql.Column"
_allow_copy: bool

def size(self) -> Optional[int]:
"""
The number of values in the column.

This would trigger computation to get the size, so we return None.
"""
return None

def offset(self) -> int:
"""
Return the offset of the first element, which is always 0 in Spark.

The only case where the offset would not be 0 would be when this object
represents a chunk. Since we have a separate class for the column chunks,
we can safely return 0 here.
"""
return 0

@property
def dtype(self) -> Tuple[DtypeKind, int, str, str]:
"""Return the Dtype of the column."""
return self._dtype_from_arrowdtype(
to_arrow_schema(self._spark_dataframe.select(self._spark_column).schema).field(0).type,
bit_width=8,
)

@property
def describe_categorical(self) -> CategoricalDescription:
"""Return the categorical description of the column, if applicable."""
raise NotImplementedError("Categorical description is not implemented for Spark columns.")

@property
def describe_null(self) -> Tuple[ColumnNullType, Any]:
"""Return the null description of the column."""
raise NotImplementedError("Null description is not implemented for Spark columns.")

@property
def null_count(self) -> Optional[int]:
"""Return the number of nulls in the column, or None if not known."""
# Always return None to avoid triggering computation
return None

@property
def num_chunks(self) -> int:
"""Return the number of chunks in the column (partitions in this case)."""
return self._spark_dataframe.rdd.getNumPartitions()

def get_chunks(self, n_chunks: Optional[int] = None) -> Iterable[_PyArrowColumn]:
"""
Return an iterator yielding the chunks of the column. See
SparkInterchangeDataframe.get_chunks for details.
"""
if n_chunks is not None:
raise NotImplementedError(
"n_chunks would require repartitioning, which is not implemented."
)
arrow_array_partitions = _get_arrow_array_partition_stream(
self._spark_dataframe.select(self._spark_column)
)
for part in arrow_array_partitions:
yield _PyArrowColumn(
column=part.column(0),
allow_copy=self._allow_copy,
)

def get_buffers(self) -> ColumnBuffers:
"""Return a dictionary of buffers for the column."""
raise NotImplementedError(
"get_buffers would force materialization, so it is not implemented."
)


@dataclasses.dataclass(frozen=True)
class SparkInterchangeDataframe(_PyArrowDataFrame):
"""
A class that conforms to the dataframe interchange protocol.

This class leverages the Arrow-based dataframe interchange protocol by returning
Spark partitions (chunks) in Arrow's dataframe interchange format. This
implementation attempts to avoid materializing all the data on the driver side at
once.
"""

_spark_dataframe: "pyspark.sql.DataFrame"
_allow_copy: bool
_nan_as_null: bool

def __dataframe__(
self, nan_as_null: bool = False, allow_copy: bool = True
) -> "SparkInterchangeDataframe":
"""Construct a new interchange dataframe, potentially changing the options."""
return SparkInterchangeDataframe(
_spark_dataframe=self._spark_dataframe,
_allow_copy=allow_copy,
_nan_as_null=nan_as_null,
)

@property
def metadata(self) -> dict[str, Any]:
"""
The metadata for the dataframe.

In Spark's case, there is no additional metadata to provide.
"""
return {}

def num_columns(self) -> int:
return len(self._spark_dataframe.columns)

def num_chunks(self) -> int:
"""Return the number of chunks in the dataframe (partitions in this case)."""
return self._spark_dataframe.rdd.getNumPartitions()

def column_names(self) -> Iterable[str]:
return self._spark_dataframe.columns

def get_column(self, i: int) -> "SparkInterchangeColumn":
"""Get a column by the 0-based index."""
col_name = self._spark_dataframe.columns[i]
return SparkInterchangeColumn(
_spark_dataframe=self._spark_dataframe,
_spark_column=self._spark_dataframe[col_name],
_allow_copy=self._allow_copy,
)

def get_column_by_name(self, name: str) -> "SparkInterchangeColumn":
"""Get a column by name."""
return SparkInterchangeColumn(
_spark_dataframe=self._spark_dataframe,
_spark_column=self._spark_dataframe[name],
_allow_copy=self._allow_copy,
)

def get_columns(self) -> Iterable[_PyArrowColumn]:
"""Return an iterator yielding the columns."""
for col_name in self._spark_dataframe.columns:
yield SparkInterchangeColumn(
_spark_dataframe=self._spark_dataframe,
_spark_column=self._spark_dataframe[col_name],
_allow_copy=self._allow_copy,
)

def select_columns(self, indices: Iterable[int]) -> "SparkInterchangeDataframe":
"""Create a new DataFrame by selecting a subset of columns by index."""
selected_column_names = [self._spark_dataframe.columns[i] for i in indices]
new_spark_df = self._spark_dataframe.select(selected_column_names)
return SparkInterchangeDataframe(
_spark_dataframe=new_spark_df,
_allow_copy=self._allow_copy,
_nan_as_null=self._nan_as_null,
)

def select_columns_by_name(self, names: Iterable[str]) -> "SparkInterchangeDataframe":
"""Create a new DataFrame by selecting a subset of columns by name."""
new_spark_df = self._spark_dataframe.select(list(names))
return SparkInterchangeDataframe(
_spark_dataframe=new_spark_df,
_allow_copy=self._allow_copy,
_nan_as_null=self._nan_as_null,
)

def get_chunks(self, n_chunks: Optional[int] = None) -> Iterable[_PyArrowDataFrame]:
"""Return an iterator yielding the chunks of the dataframe."""
if n_chunks is not None:
raise NotImplementedError(
"n_chunks would require repartitioning, which is not implemented."
)
arrow_array_partitions = _get_arrow_array_partition_stream(self._spark_dataframe)
for part in arrow_array_partitions:
yield _PyArrowDataFrame(
part,
allow_copy=self._allow_copy,
)
38 changes: 38 additions & 0 deletions python/pyspark/pandas/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -13824,6 +13824,44 @@ def __class_getitem__(cls, params: Any) -> object:
# we always wraps the given type hints by a tuple to mimic the variadic generic.
return create_tuple_for_frame_type(params)

def __dataframe__(self, nan_as_null: bool = False, allow_copy: bool = True):
"""
Return a DataFrame interchange protocol object.

Parameters
----------
nan_as_null : bool, default False
Whether to treat NaN values as nulls.
allow_copy : bool, default True
Whether the implementation is allowed to return a copy of the data.

Returns
-------
SparkInterChangeDataFrame object.
"""
from pyspark.interchange import SparkInterchangeDataFrame

return SparkInterchangeDataFrame(self._internal.spark_frame, nan_as_null, allow_copy)

def __arrow_c_stream__(self, requested_schema: Optional["pyarrow.Schema"] = None) -> object:
"""
Export to a C PyCapsule stream object.

Parameters
----------
requested_schema : pyarrow.Schema, optional
The schema to attempt to use for the output stream. This is a best effort request,

Returns
-------
A C PyCapsule stream object.
"""
from pyspark.interchange import SparkArrowCStreamer

return SparkArrowCStreamer(self._internal.to_internal_spark_frame).__arrow_c_stream__(
requested_schema
)


def _reduce_spark_multi(sdf: PySparkDataFrame, aggs: List[PySparkColumn]) -> Any:
"""
Expand Down
36 changes: 36 additions & 0 deletions python/pyspark/sql/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -7057,6 +7057,42 @@ def replace(

replace.__doc__ = DataFrame.replace.__doc__

def __dataframe__(self, nan_as_null: bool = False, allow_copy: bool = True):
"""
Return a DataFrame interchange protocol object.

Parameters
----------
nan_as_null : bool, default False
Whether to treat NaN values as nulls.
allow_copy : bool, default True
Whether the implementation is allowed to return a copy of the data.

Returns
-------
SparkInterChangeDataFrame object.
"""
from pyspark.interchange import SparkInterchangeDataFrame

return SparkInterchangeDataFrame(self, nan_as_null, allow_copy)

def __arrow_c_stream__(self, requested_schema: Optional["pyarrow.Schema"] = None) -> object:
"""
Export to a C PyCapsule stream object.

Parameters
----------
requested_schema : pyarrow.Schema, optional
The schema to attempt to use for the output stream. This is a best effort request,

Returns
-------
A C PyCapsule stream object.
"""
from pyspark.interchange import SparkArrowCStreamer

return SparkArrowCStreamer(self).__arrow_c_stream__(requested_schema)


class DataFrameStatFunctions:
"""Functionality for statistic functions with :class:`DataFrame`.
Expand Down
28 changes: 28 additions & 0 deletions python/pyspark/sql/tests/test_interchange.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
import unittest
import pyarrow as pa
import pandas as pd
import pyspark.pandas as ps

try:
import duckdb

DUCKDB_TESTS = True
except ImportError:
DUCKDB_TESTS = False
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

DUCKDB_TESTS should be in pyspark/testing/utils.py and conform to the other library checkers.



class TestSparkArrowCStreamer(unittest.TestCase):
def test_spark_arrow_c_streamer(self):
if not DUCKDB_TESTS:
self.skipTest("duckdb is not installed")

pdf = pd.DataFrame({"A": [1, "a"], "B": [2, "b"], "C": [3, "c"], "D": [4, "d"]})
psdf = ps.from_pandas(pdf)
# Use Spark Arrow C Streamer to convert PyArrow Table to DuckDB relation
stream = pa.RecordBatchReader.from_stream(psdf)
assert isinstance(stream, pa.RecordBatchReader)

# Verify the contents of the DuckDB relation
result = duckdb.execute("SELECT * from stream").fetchall()
expected = [(1, "a"), (2, "b"), (3, "c"), (4, "d")]
self.assertEqual(result, expected)