-
Notifications
You must be signed in to change notification settings - Fork 48
[DLPack] Add inline C++ tests for torch DLPack Exchange API protocol #111
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
64b0249
update
Kathryn-cat d8643a8
remove hardcoded dlpack version number and address lint
Kathryn-cat 8bc4fb5
consolidate the tests
Kathryn-cat ac10b02
better error messages
Kathryn-cat b1086e9
fix leak
Kathryn-cat 73d5384
Update tests/python/test_dlpack_exchange_api.py
Kathryn-cat File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,206 @@ | ||
| # Licensed to the Apache Software Foundation (ASF) under one | ||
| # or more contributor license agreements. See the NOTICE file | ||
| # distributed with this work for additional information | ||
| # regarding copyright ownership. The ASF licenses this file to | ||
| # you under the Apache License, Version 2.0 (the | ||
| # "License"); you may not use this file except in compliance | ||
| # with the License. You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, | ||
| # software distributed under the License is distributed on an | ||
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
| # KIND, either express or implied. See the License for the | ||
| # specific language governing permissions and limitations | ||
| # under the License. | ||
|
|
||
|
|
||
| from __future__ import annotations | ||
|
|
||
| import pytest | ||
|
|
||
| try: | ||
| import torch # type: ignore[no-redef] | ||
|
|
||
| # Import tvm_ffi to load the DLPack exchange API extension | ||
| # This sets torch.Tensor.__c_dlpack_exchange_api__ | ||
| import tvm_ffi # noqa: F401 | ||
| from torch.utils import cpp_extension # type: ignore | ||
| from tvm_ffi import libinfo | ||
| except ImportError: | ||
| torch = None | ||
|
|
||
| # Check if DLPack Exchange API is available | ||
| _has_dlpack_api = torch is not None and hasattr(torch.Tensor, "__c_dlpack_exchange_api__") | ||
|
|
||
|
|
||
| @pytest.mark.skipif(not _has_dlpack_api, reason="PyTorch DLPack Exchange API not available") | ||
| def test_dlpack_exchange_api() -> None: | ||
| assert torch is not None | ||
|
|
||
| assert hasattr(torch.Tensor, "__c_dlpack_exchange_api__") | ||
| api_ptr = torch.Tensor.__c_dlpack_exchange_api__ | ||
| assert isinstance(api_ptr, int), "API pointer should be an integer" | ||
| assert api_ptr != 0, "API pointer should not be NULL" | ||
|
|
||
| tensor = torch.arange(24, dtype=torch.float32).reshape(2, 3, 4) | ||
|
|
||
| source = """ | ||
| #include <torch/extension.h> | ||
| #include <dlpack/dlpack.h> | ||
| #include <memory> | ||
|
|
||
| void test_dlpack_api(at::Tensor tensor, int64_t api_ptr_int, bool cuda_available) { | ||
| DLPackExchangeAPI* api = reinterpret_cast<DLPackExchangeAPI*>(api_ptr_int); | ||
|
|
||
| // Test 1: API structure and version | ||
| { | ||
| TORCH_CHECK(api != nullptr, "API pointer is NULL"); | ||
| TORCH_CHECK(api->header.version.major == DLPACK_MAJOR_VERSION, | ||
| "Expected major version ", DLPACK_MAJOR_VERSION, ", got ", api->header.version.major); | ||
| TORCH_CHECK(api->header.version.minor == DLPACK_MINOR_VERSION, | ||
| "Expected minor version ", DLPACK_MINOR_VERSION, ", got ", api->header.version.minor); | ||
| TORCH_CHECK(api->managed_tensor_allocator != nullptr, | ||
| "managed_tensor_allocator is NULL"); | ||
| TORCH_CHECK(api->managed_tensor_from_py_object_no_sync != nullptr, | ||
| "managed_tensor_from_py_object_no_sync is NULL"); | ||
| TORCH_CHECK(api->managed_tensor_to_py_object_no_sync != nullptr, | ||
| "managed_tensor_to_py_object_no_sync is NULL"); | ||
| TORCH_CHECK(api->dltensor_from_py_object_no_sync != nullptr, | ||
| "dltensor_from_py_object_no_sync is NULL"); | ||
| TORCH_CHECK(api->current_work_stream != nullptr, | ||
| "current_work_stream is NULL"); | ||
| } | ||
|
|
||
| // Test 2: managed_tensor_allocator | ||
| { | ||
| DLTensor prototype; | ||
| prototype.device.device_type = kDLCPU; | ||
| prototype.device.device_id = 0; | ||
| prototype.ndim = 3; | ||
| int64_t shape[3] = {3, 4, 5}; | ||
| prototype.shape = shape; | ||
| prototype.strides = nullptr; | ||
| DLDataType dtype; | ||
| dtype.code = kDLFloat; | ||
| dtype.bits = 32; | ||
| dtype.lanes = 1; | ||
| prototype.dtype = dtype; | ||
| prototype.data = nullptr; | ||
| prototype.byte_offset = 0; | ||
|
|
||
| DLManagedTensorVersioned* out_tensor = nullptr; | ||
| int result = api->managed_tensor_allocator(&prototype, &out_tensor, nullptr, nullptr); | ||
| TORCH_CHECK(result == 0, "Allocator failed with code ", result); | ||
| TORCH_CHECK(out_tensor != nullptr, "Allocator returned NULL"); | ||
| TORCH_CHECK(out_tensor->dl_tensor.ndim == 3, "Expected ndim 3, got ", out_tensor->dl_tensor.ndim); | ||
| TORCH_CHECK(out_tensor->dl_tensor.shape[0] == 3, "Expected shape[0] = 3, got ", out_tensor->dl_tensor.shape[0]); | ||
| TORCH_CHECK(out_tensor->dl_tensor.shape[1] == 4, "Expected shape[1] = 4, got ", out_tensor->dl_tensor.shape[1]); | ||
| TORCH_CHECK(out_tensor->dl_tensor.shape[2] == 5, "Expected shape[2] = 5, got ", out_tensor->dl_tensor.shape[2]); | ||
| TORCH_CHECK(out_tensor->dl_tensor.dtype.code == kDLFloat, "Expected dtype code kDLFloat, got ", out_tensor->dl_tensor.dtype.code); | ||
| TORCH_CHECK(out_tensor->dl_tensor.dtype.bits == 32, "Expected dtype bits 32, got ", out_tensor->dl_tensor.dtype.bits); | ||
| TORCH_CHECK(out_tensor->dl_tensor.device.device_type == kDLCPU, "Expected device type kDLCPU, got ", out_tensor->dl_tensor.device.device_type); | ||
| if (out_tensor->deleter) { | ||
| out_tensor->deleter(out_tensor); | ||
| } | ||
| } | ||
|
|
||
| // Test 3: managed_tensor_from_py_object_no_sync | ||
| { | ||
| std::unique_ptr<PyObject, decltype(&Py_DECREF)> py_obj(THPVariable_Wrap(tensor), &Py_DECREF); | ||
| TORCH_CHECK(py_obj.get() != nullptr, "Failed to wrap tensor to PyObject"); | ||
|
|
||
| DLManagedTensorVersioned* out_tensor = nullptr; | ||
| int result = api->managed_tensor_from_py_object_no_sync(py_obj.get(), &out_tensor); | ||
|
|
||
| TORCH_CHECK(result == 0, "from_py_object_no_sync failed with code ", result); | ||
| TORCH_CHECK(out_tensor != nullptr, "from_py_object_no_sync returned NULL"); | ||
| TORCH_CHECK(out_tensor->version.major == DLPACK_MAJOR_VERSION, | ||
| "Expected major version ", DLPACK_MAJOR_VERSION, ", got ", out_tensor->version.major); | ||
| TORCH_CHECK(out_tensor->version.minor == DLPACK_MINOR_VERSION, | ||
| "Expected minor version ", DLPACK_MINOR_VERSION, ", got ", out_tensor->version.minor); | ||
| TORCH_CHECK(out_tensor->dl_tensor.ndim == 3, "Expected ndim 3, got ", out_tensor->dl_tensor.ndim); | ||
| TORCH_CHECK(out_tensor->dl_tensor.shape[0] == 2, "Expected shape[0] = 2, got ", out_tensor->dl_tensor.shape[0]); | ||
| TORCH_CHECK(out_tensor->dl_tensor.shape[1] == 3, "Expected shape[1] = 3, got ", out_tensor->dl_tensor.shape[1]); | ||
| TORCH_CHECK(out_tensor->dl_tensor.shape[2] == 4, "Expected shape[2] = 4, got ", out_tensor->dl_tensor.shape[2]); | ||
| TORCH_CHECK(out_tensor->dl_tensor.dtype.code == kDLFloat, "Expected dtype code kDLFloat, got ", out_tensor->dl_tensor.dtype.code); | ||
| TORCH_CHECK(out_tensor->dl_tensor.dtype.bits == 32, "Expected dtype bits 32, got ", out_tensor->dl_tensor.dtype.bits); | ||
| TORCH_CHECK(out_tensor->dl_tensor.data != nullptr, "Data pointer is NULL"); | ||
|
|
||
| if (out_tensor->deleter) { | ||
| out_tensor->deleter(out_tensor); | ||
| } | ||
| } | ||
|
|
||
| // Test 4: managed_tensor_to_py_object_no_sync | ||
| { | ||
| std::unique_ptr<PyObject, decltype(&Py_DECREF)> py_obj(THPVariable_Wrap(tensor), &Py_DECREF); | ||
| TORCH_CHECK(py_obj.get() != nullptr, "Failed to wrap tensor to PyObject"); | ||
|
|
||
| DLManagedTensorVersioned* managed_tensor = nullptr; | ||
| int result = api->managed_tensor_from_py_object_no_sync(py_obj.get(), &managed_tensor); | ||
| TORCH_CHECK(result == 0, "from_py_object_no_sync failed"); | ||
| TORCH_CHECK(managed_tensor != nullptr, "from_py_object_no_sync returned NULL"); | ||
|
|
||
| std::unique_ptr<PyObject, decltype(&Py_DECREF)> py_obj_out(nullptr, &Py_DECREF); | ||
| PyObject* py_obj_out_raw = nullptr; | ||
| result = api->managed_tensor_to_py_object_no_sync(managed_tensor, reinterpret_cast<void**>(&py_obj_out_raw)); | ||
| py_obj_out.reset(py_obj_out_raw); | ||
|
|
||
| TORCH_CHECK(result == 0, "to_py_object_no_sync failed with code ", result); | ||
| TORCH_CHECK(py_obj_out.get() != nullptr, "to_py_object_no_sync returned NULL"); | ||
| TORCH_CHECK(THPVariable_Check(py_obj_out.get()), "Returned PyObject is not a Tensor"); | ||
|
|
||
| at::Tensor result_tensor = THPVariable_Unpack(py_obj_out.get()); | ||
| TORCH_CHECK(result_tensor.dim() == 3, "Expected 3 dimensions, got ", result_tensor.dim()); | ||
| TORCH_CHECK(result_tensor.size(0) == 2, "Expected size(0) = 2, got ", result_tensor.size(0)); | ||
| TORCH_CHECK(result_tensor.size(1) == 3, "Expected size(1) = 3, got ", result_tensor.size(1)); | ||
| TORCH_CHECK(result_tensor.size(2) == 4, "Expected size(2) = 4, got ", result_tensor.size(2)); | ||
| TORCH_CHECK(result_tensor.scalar_type() == at::kFloat, "Expected dtype kFloat, got ", result_tensor.scalar_type()); | ||
| } | ||
|
|
||
| // Test 5: dltensor_from_py_object_no_sync | ||
| { | ||
| std::unique_ptr<PyObject, decltype(&Py_DECREF)> py_obj(THPVariable_Wrap(tensor), &Py_DECREF); | ||
| TORCH_CHECK(py_obj.get() != nullptr, "Failed to wrap tensor to PyObject"); | ||
|
|
||
| DLTensor dltensor; | ||
| int result = api->dltensor_from_py_object_no_sync(py_obj.get(), &dltensor); | ||
| TORCH_CHECK(result == 0, "dltensor_from_py_object_no_sync failed with code ", result); | ||
| TORCH_CHECK(dltensor.ndim == 3, "Expected ndim 3, got ", dltensor.ndim); | ||
| TORCH_CHECK(dltensor.shape[0] == 2, "Expected shape[0] = 2, got ", dltensor.shape[0]); | ||
| TORCH_CHECK(dltensor.shape[1] == 3, "Expected shape[1] = 3, got ", dltensor.shape[1]); | ||
| TORCH_CHECK(dltensor.shape[2] == 4, "Expected shape[2] = 4, got ", dltensor.shape[2]); | ||
| TORCH_CHECK(dltensor.dtype.code == kDLFloat, "Expected dtype code kDLFloat, got ", dltensor.dtype.code); | ||
| TORCH_CHECK(dltensor.dtype.bits == 32, "Expected dtype bits 32, got ", dltensor.dtype.bits); | ||
| TORCH_CHECK(dltensor.data != nullptr, "Data pointer is NULL"); | ||
| } | ||
|
|
||
| // Test 6: current_work_stream (CUDA if available, otherwise CPU) | ||
| { | ||
| void* stream_out = nullptr; | ||
| DLDeviceType device_type = cuda_available ? kDLCUDA : kDLCPU; | ||
| int result = api->current_work_stream(device_type, 0, &stream_out); | ||
| TORCH_CHECK(result == 0, "current_work_stream failed with code ", result); | ||
| } | ||
| } | ||
| """ | ||
|
|
||
| include_paths = libinfo.include_paths() | ||
| if torch.cuda.is_available(): | ||
| include_paths += cpp_extension.include_paths("cuda") | ||
|
|
||
| mod = cpp_extension.load_inline( | ||
| name="dlpack_test", | ||
| cpp_sources=[source], | ||
| functions=["test_dlpack_api"], | ||
| extra_include_paths=include_paths, | ||
| ) | ||
|
|
||
| # Run the comprehensive test | ||
| mod.test_dlpack_api(tensor, api_ptr, torch.cuda.is_available()) | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| pytest.main([__file__, "-v", "-s"]) | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.