Package for converting VSVI (used in VAST) image datasets to precomputed volumes. Supports conversion of local and AWS S3 datasets.
Requirements:
- Python
- AWS CLI (if using S3)
Convert a cloud dataset and store in new cloud path:
pip install -r requirements.txt
python vsvi2precomputed.py -i s3://path/to/config.vsvi -o s3://path/to/output/dir/
Don't forget the trailing slash on the output dir.
Convert a local dataset and upload to the cloud:
python vsvi2precomputed.py --i path/to/config.vsvi --o s3://path/to/output/dir/
Convert a cloud dataset and upload to the cloud:
python vsvi2precomputed.py --i s3://path/to/config.vsvi --o path/to/output/dir/
Convert a dataset locally:
python vsvi2precomputed.py --i path/to/config.vsvi --o path/to/output/dir/
Optional Arguments
Argument | Description | Default |
---|---|---|
--profile | AWS CLI profile name | default |
pip install pytest
pytest
To use an non-default AWS CLI profile:
pytest --profile <profile-name>
VSVI format is native to the VAST ecosystem. Precomputed format is native to the Neuroglancer/CloudVolume ecosystem.
To view converted data in Neuroglancer:
- Navigate to neuroglancer.bossdb.io.
- Add a new layer using the Data Source URL input box on the top right.
- S3: The Data Source URL will be the S3 URI of the directory containing the info file, prepended with
precomputed://
. Example:precomputed://s3://mambo-datalake/connects49a/vsvi2precomputed/local_aligned/
. - Local: You will need to serve the data first. Navigate to the directory containing the info file, then open a terminal and run the following code. The Data Source URL will then follow the format
precomputed://localhost:<port>/
.
from cloudvolume import CloudVolume cv = CloudVolume("file://.") cv.viewer()
- Click the yellow "Create as image layer" button at the bottom right.
- S3: The Data Source URL will be the S3 URI of the directory containing the info file, prepended with
We thank the Visual Computing Group at Harvard for building the VAST software. https://www.frontiersin.org/journals/neural-circuits/articles/10.3389/fncir.2018.00088/full
Copyright (c) 2024 The Johns Hopkins University Applied Physics Laboratory LLC.