Skip to content

Commit

Permalink
build
Browse files Browse the repository at this point in the history
  • Loading branch information
ashioyajotham committed Jan 11, 2025
1 parent 13c16ba commit a3f5249
Showing 1 changed file with 74 additions and 4 deletions.
78 changes: 74 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,70 @@ A sophisticated crypto trading system combining FinGPT with market inefficiency
## Core Components

### 1. Market Inefficiency Detection
We focus on four key types of market inefficiencies:

#### a) Sentiment-Price Divergence
When market sentiment and price movements show significant disparity:
```math
SPD(t) = |S(t) - P'(t)| > θ
where:
- S(t): Normalized sentiment score at time t
- P'(t): Normalized price change
- θ: Divergence threshold
```

#### b) Order Flow Imbalance
Detects unusual buying/selling pressure:
```math
OFI(t) = Σ[V_b(i) - V_a(i)] / Σ[V_b(i) + V_a(i)]
where:
- V_b(i): Volume at bid level i
- V_a(i): Volume at ask level i
```

#### c) Microstructure Mean Reversion
Based on mean-reverting behavior in market microstructure:
```math
MR(t) = -λ(P(t) - μ) + ε(t)
where:
- λ: Mean reversion rate
- μ: Long-term mean price
- ε(t): Random noise
```

#### d) Cross-Exchange Arbitrage
Identifies price discrepancies across exchanges:
```math
XA(t) = max(|P_i(t) - P_j(t)| - c_ij)
where:
- P_i(t): Price on exchange i
- P_j(t): Price on exchange j
- c_ij: Transaction costs
```

### 2. Robo Advisory System
### 3. Portfolio Management
### 4. Risk Management
Our robo advisor implements modern portfolio theory with ESG and tax considerations:

#### a) Portfolio Optimization
```math
w* = argmax_w(w'μ - λw'Σw)
subject to:
- Σw_i = 1
- w_i ≥ 0
- ESG_score(w) ≥ threshold
```

#### b) Tax-Loss Harvesting
```math
TaxSavings = Losses × TaxRate
Execute if: TaxSavings > TransactionCosts + OpportunityCost
```

#### c) Dynamic Rebalancing
```math
Rebalance if: |w_current - w_target| > min(base_threshold, tax_adjusted_threshold)
where: tax_adjusted_threshold = base_threshold × (1 + tax_impact_factor)
```

## System Architecture

Expand All @@ -17,12 +78,14 @@ graph TB
MD[Market Data Stream] --> PP[Price Processor]
NF[News Feed] --> NP[News Processor]
OB[Order Book] --> OP[Order Flow Processor]
XE[Cross-Exchange Data] --> XA[Arbitrage Detector]
end
subgraph Analysis Layer
PP --> TA[Technical Analysis]
NP --> SA[Sentiment Analysis]
OP --> MA[Microstructure Analysis]
XA --> CA[Cross-Exchange Analysis]
subgraph LLM Module
SA --> FG[FinGPT]
Expand All @@ -33,13 +96,18 @@ graph TB
TA --> ID[Inefficiency Detector]
MA --> ID
SS --> ID
CA --> ID
end
subgraph Robo Advisory
CP[Client Profiles] --> PA[Portfolio Analysis]
CP[Client Profiles] --> RA[Risk Assessment]
RA --> PA[Portfolio Analysis]
PA --> PO[Portfolio Optimization]
PA --> TH[Tax Harvesting]
PA --> ESG[ESG Optimization]
PA --> RB[Rebalancing]
PO --> RB[Rebalancing]
TH --> RB
ESG --> RB
end
end
Expand All @@ -55,6 +123,8 @@ graph TB
OE --> PT[Performance Tracker]
PT --> RA[Risk Analyzer]
RA --> AA[Alpha Attribution]
PT --> TC[Tax Calculator]
PT --> EC[ESG Compliance]
end
```

Expand Down

0 comments on commit a3f5249

Please sign in to comment.