Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

M3SA - Multi-Meta-Model Simulation Analyzer #251

Merged
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
Show all changes
31 commits
Select commit Hold shift + click to select a range
52f3738
(feat) demo files are now ignored
Radu-Nicolae Sep 10, 2024
be9011f
integrating m3sa changes with opendc
Radu-Nicolae Sep 10, 2024
1122bb4
gitignore ignores demo
Radu-Nicolae Sep 10, 2024
42ff227
m3sa linked, tested, works 🎉🎆
Radu-Nicolae Sep 10, 2024
cf91362
linting & checks fully pass
Radu-Nicolae Sep 10, 2024
f26cce2
m3sa documentation (re...)added
Radu-Nicolae Sep 10, 2024
8b7de0b
package.json added, a potentail solution for Build Docker Images work…
Radu-Nicolae Sep 10, 2024
0932a99
(fix) opendc-m3sa renamed to opendc-experiments-m3sa
Radu-Nicolae Sep 14, 2024
918cc5c
(feat) Model is now a dataclass
Radu-Nicolae Sep 14, 2024
3dd068a
(fix) package and package-lock reverted as before the PR, now they mi…
Radu-Nicolae Sep 14, 2024
3ba2843
(fix) Experiments renamed to experiment
Radu-Nicolae Sep 14, 2024
c93cf01
Merge branch 'master' into m3sa-integration-pr-branch
Radu-Nicolae Sep 14, 2024
70f4952
branch updated with changes from master branch
Radu-Nicolae Sep 14, 2024
33ab751
trying to fix the build docker image failed workflow
Radu-Nicolae Sep 14, 2024
864c1c4
trying to fix the build docker image failed workflow
Radu-Nicolae Sep 14, 2024
2b67e2e
All simulation are now run with a single CPU and single MemoryUnit. m…
Radu-Nicolae Sep 17, 2024
904faea
All simulation are now run with a single CPU and single MemoryUnit. m…
Radu-Nicolae Sep 17, 2024
36fbcc7
All simulation are now run with a single CPU and single MemoryUnit. m…
Radu-Nicolae Sep 17, 2024
1e401a9
Merge branch 'atlarge-research:master' into m3sa-integration-pr-branch
Radu-Nicolae Sep 17, 2024
b9107b1
[TEMP](feat) m3saCli decoupled from experimentCli
Radu-Nicolae Sep 17, 2024
8909923
spotless and minor refactoring
Radu-Nicolae Sep 17, 2024
2ef3776
(feat)[TEMP] decoupling m3sa from experiment
Radu-Nicolae Sep 17, 2024
5be1008
spotless applied
Radu-Nicolae Sep 17, 2024
f129706
documentation resolved
Radu-Nicolae Sep 18, 2024
59fbd93
requirements.txt added
Radu-Nicolae Sep 18, 2024
f73c1db
path to M3SA is now provided as a parameter to M3SACLI
Radu-Nicolae Sep 25, 2024
9da4144
spotless applied
Radu-Nicolae Sep 25, 2024
bcf7d12
(fix) python environment variables solved, output analysis folder solved
Radu-Nicolae Oct 3, 2024
da6c2f4
documentation changed and matching the master branch doc
Radu-Nicolae Oct 7, 2024
82ca406
package-lock reverted
Radu-Nicolae Oct 24, 2024
64ec4ab
package-lock reverted
Radu-Nicolae Oct 24, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -115,3 +115,6 @@ gradle-app.setting

# Cache of project
.gradletasknamecache

# Demo files
demo/*
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why does experiment-base implement m3sa?

As far as I understand, m3sa uses base, not the other way around.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

both m3sa and experiment-base use, in one way or another, each other.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In which way does experiment-base use m3sa?
Also this would be circular importing, which is not possible.

Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ dependencies {
api(projects.opendcCompute.opendcComputeSimulator)

implementation(libs.clikt)
implementation(project(":opendc-experiments:opendc-m3sa"))

implementation("org.jetbrains.kotlinx:kotlinx-serialization-json:1.6.0")
implementation(libs.progressbar)
Expand Down
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Again, Experiment.kt should not be used by m3sa, and thus not changed

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

let's see if we have a better alternative -- how would you suggest to make this change? what code to add in which file?

Copy link
Contributor Author

@Radu-Nicolae Radu-Nicolae Sep 13, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

[TOTALK#1]

Original file line number Diff line number Diff line change
Expand Up @@ -27,10 +27,12 @@ package org.opendc.experiments.base.runner
import com.github.ajalt.clikt.core.CliktCommand
import com.github.ajalt.clikt.parameters.options.default
import com.github.ajalt.clikt.parameters.options.defaultLazy
import com.github.ajalt.clikt.parameters.options.flag
import com.github.ajalt.clikt.parameters.options.option
import com.github.ajalt.clikt.parameters.types.file
import com.github.ajalt.clikt.parameters.types.int
import org.opendc.experiments.base.scenario.getExperiment
import m3saRun
import org.opendc.experiments.base.scenario.getExperiments
import java.io.File

/**
Expand All @@ -56,8 +58,18 @@ internal class ExperimentCommand : CliktCommand(name = "experiment") {
.int()
.default(Runtime.getRuntime().availableProcessors() - 1)

private val analyzeResults by option("-a", "--analyze-results", help = "analyze the results")
.flag(default = false)

override fun run() {
val experiment = getExperiment(scenarioPath)
runExperiment(experiment, parallelism)
val experiments = getExperiments(scenarioPath)
runExperiment(experiments, parallelism)

if (analyzeResults) {
m3saRun(
outputFolderPath = experiments[0].outputFolder,
m3saSetupPath = experiments[0].m3saSetup,
)
}
}
}
Radu-Nicolae marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -35,8 +35,8 @@ private val experimentWriter = ExperimentWriter()
* @param filePath The path to the file containing the scenario specifications.
* @return A list of Scenarios.
*/
public fun getExperiment(filePath: String): List<Scenario> {
return getExperiment(File(filePath))
public fun getExperiments(filePath: String): List<Scenario> {
return getExperiments(File(filePath))
}

/**
Expand All @@ -45,8 +45,8 @@ public fun getExperiment(filePath: String): List<Scenario> {
* @param file The file containing the scenario specifications.
* @return A list of Scenarios.
*/
public fun getExperiment(file: File): List<Scenario> {
return getExperiment(experimentReader.read(file))
public fun getExperiments(file: File): List<Scenario> {
return getExperiments(experimentReader.read(file))
}

/**
Expand All @@ -56,7 +56,7 @@ public fun getExperiment(file: File): List<Scenario> {
* @param experimentSpec The ScenarioSpec containing the scenario specifications.
* @return A list of Scenarios.
*/
public fun getExperiment(experimentSpec: ExperimentSpec): List<Scenario> {
public fun getExperiments(experimentSpec: ExperimentSpec): List<Scenario> {
val outputFolder = experimentSpec.outputFolder + "/" + experimentSpec.name
File(outputFolder).mkdirs()

Expand All @@ -79,6 +79,7 @@ public fun getExperiment(experimentSpec: ExperimentSpec): List<Scenario> {
carbonTracePath = scenarioSpec.carbonTracePath,
exportModelSpec = scenarioSpec.exportModel,
outputFolder = outputFolder,
m3saSetup = experimentSpec.m3saSetup,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is m3saSetup ever used when running a scenario?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yes, m3saSetup is used in scenario-post run. triggers and links the scenario with m3sa

name = scenarioID.toString(),
runs = experimentSpec.runs,
initialSeed = experimentSpec.initialSeed,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@ public data class Scenario(
val failureModelSpec: FailureModelSpec?,
val checkpointModelSpec: CheckpointModelSpec?,
val carbonTracePath: String? = null,
val m3saSetup: String = "",
val exportModelSpec: ExportModelSpec = ExportModelSpec(),
val outputFolder: String = "output",
val computeExportConfig: ComputeExportConfig,
Expand Down
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

m3sa should not touch ExperimentSpec

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It is also unclear what m3saSetup does, and why it is needed in ExperimentCli

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

please suggest a better alternative, what files to change and with which code

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

[TOTALK#2]

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

m3saSetup in ExperimentSpec -- non mandatory to setup, but part of an experiment, used when parsing the JSON file. this is part of the JSON file parser.

Original file line number Diff line number Diff line change
Expand Up @@ -42,13 +42,15 @@ import java.util.UUID
* @property computeExportConfig configures which parquet columns are to
* be included in the output files.
*/

@Serializable
public data class ExperimentSpec(
var id: Int = -1,
var name: String = "",
val outputFolder: String = "output",
val initialSeed: Int = 0,
val runs: Int = 1,
val m3saSetup: String = "",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why is this defined in the ExperimentSpec?

val topologies: Set<ScenarioTopologySpec>,
val workloads: Set<WorkloadSpec>,
val allocationPolicies: Set<AllocationPolicySpec> = setOf(AllocationPolicySpec()),
Expand Down
41 changes: 41 additions & 0 deletions opendc-experiments/opendc-m3sa/build.gradle.kts
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
/*
* Copyright (c) 2020 AtLarge Research
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/

description = "Multi-Meta-Model Simulation Analysis (M3SA) used across OpenDC modules"

// Build configuration
plugins {
`kotlin-library-conventions`
}

dependencies {
api(libs.kotlinx.coroutines)

testImplementation(projects.opendcSimulator.opendcSimulatorCore)
}

sourceSets {
main {
kotlin.srcDirs("src/main/kotlin", "src/main/python")
resources.srcDir("src/main/resources")
}
}
55 changes: 55 additions & 0 deletions opendc-experiments/opendc-m3sa/src/main/kotlin/M3saRunner.kt
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
/*
* Copyright (c) 2024 AtLarge Research
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/

import kotlin.io.path.Path

/**
* This constant variable should be changed depending on the root folder that is being run.
* PATH_TO_PYTHON_MAIN should point to the main python file, ran when the analysis starts.
*/

public val ANALYSIS_SCRIPTS_DIRECTORY: String = "./opendc-experiments/opendc-m3sa/src/main/python"
public val ABSOLUTE_SCRIPT_PATH: String =
Path("$ANALYSIS_SCRIPTS_DIRECTORY/main.py").toAbsolutePath().normalize().toString()
public val SCRIPT_LANGUAGE: String = "python3"

public fun m3saRun(
outputFolderPath: String,
m3saSetupPath: String,
) {
val process =
ProcessBuilder(
SCRIPT_LANGUAGE,
ABSOLUTE_SCRIPT_PATH,
outputFolderPath,
m3saSetupPath,
).directory(Path(ANALYSIS_SCRIPTS_DIRECTORY).toFile())
.start()

val exitCode = process.waitFor()
if (exitCode == 0) {
println("[M3SA says] M3SA operation(s) completed successfully.")
} else {
val errors = process.errorStream.bufferedReader().readText()
println("[M3SA says] Exit code $exitCode; Error(s): $errors")
}
}
114 changes: 114 additions & 0 deletions opendc-experiments/opendc-m3sa/src/main/python/accuracy_evaluator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
import numpy as np

from models.MetaModel import MetaModel


def accuracy_evaluator(
real_data,
multi_model,
compute_mape=True,
compute_nad=True,
compute_rmsle=True,
rmsle_hyperparameter=0.5,
only_metamodel=False
):
"""
:param real_data: the real-world data of the simulation
:param multi_model: the Multi-Model, containing individual models (possibly also a Meta-Model, with id=101)
:param MAPE: whether to calculate Mean Absolute Percentage Error (MAPE)
:param NAD: whether to calculate Normalized Absolute Differences (NAD)
:param RMSLE: whether to calculate Root Mean Square Logarithmic Error (RMSLE)
:param rmsle_hyperparameter: the hyperparameter that balances the ration underestimations:overestimations
- default is 0.5 (balanced penalty)
- < 0.5: more penalty for overestimations
- > 0.5: more penalty for underestimations
e.g., RMSLE_hyperparameter=0.3 -> 30% penalty for overestimations, 70% penalty for underestimations (3:7 ratio)
:return: None, but prints the accuracy metrics
"""

meta_model = MetaModel(multimodel=multi_model)
multi_model.models.append(meta_model.meta_model) # metamodel
# multi_model.models.append(Model(raw_host_data=real_data, id=-1, path=None)) # real-world data

with open(multi_model.output_folder_path + "/accuracy_report.txt", "a") as f:
f.write("====================================\n")
f.write("Accuracy Report, against ground truth\n")

for model in multi_model.models:
if only_metamodel and model.id != 101:
continue

if model.id == -1:
f.write("Real-World data")
elif model.id == 101:
f.write(
f"Meta-Model, meta-function: {multi_model.user_input['meta_function']}, window_size: {meta_model.multi_model.window_size}")
else:
f.write(f"Model {model.id}")

simulation_data = model.raw_sim_data
min_len = min(len(real_data), len(simulation_data))
real_data = real_data[:min_len]
simulation_data = simulation_data[:min_len]
if compute_mape:
accuracy_mape = mape(
real_data=real_data,
simulation_data=simulation_data
)
f.write(f"\nMean Absolute Percentage Error (MAPE): {accuracy_mape}%")

if compute_nad:
accuracy_nad = nad(
real_data=real_data,
simulation_data=simulation_data
)
f.write(f"\nNormalized Absolute Differences (NAD): {accuracy_nad}%")

if compute_rmsle:
accuracy_rmsle = rmsle(
real_data=real_data,
simulation_data=simulation_data,
alpha=rmsle_hyperparameter
)
f.write(
f"\nRoot Mean Square Logarithmic Error (RMSLE), alpha={rmsle_hyperparameter}:{accuracy_rmsle}\n\n")

f.write("====================================\n")


def mape(real_data, simulation_data):
"""
Calculate Mean Absolute Percentage Error (MAPE)
:param real_data: Array of real values
:param simulation_data: Array of simulated values
:return: MAPE value
"""
real_data = np.array(real_data)
simulation_data = np.array(simulation_data)
return round(np.mean(np.abs((real_data - simulation_data) / real_data)) * 100, 3)


def nad(real_data, simulation_data):
"""
Calculate Normalized Absolute Differences (NAD)
:param real_data: Array of real values
:param simulation_data: Array of simulated values
:return: NAD value
"""
real_data = np.array(real_data)
simulation_data = np.array(simulation_data)
return round(np.sum(np.abs(real_data - simulation_data)) / np.sum(real_data) * 100, 3)


def rmsle(real_data, simulation_data, alpha=0.5):
"""
Calculate Root Mean Square Logarithmic Error (RMSLE) with an adjustable alpha parameter
:param real_data: Array of real values
:param simulation_data: Array of simulated values
:param alpha: Hyperparameter that balances the penalty between underestimations and overestimations
:return: RMSLE value
"""
real_data = np.array(real_data)
simulation_data = np.array(simulation_data)
log_diff = alpha * np.log(real_data) - (1 - alpha) * np.log(simulation_data)
return round(np.sqrt(np.mean(log_diff ** 2)) * 100, 3)
Loading
Loading