Skip to content

Commit

Permalink
Add integ for test_hyperparameter_tuning_job and test_transform_job
Browse files Browse the repository at this point in the history
  • Loading branch information
liujiaorr committed Sep 27, 2024
1 parent beedb53 commit e221c7f
Show file tree
Hide file tree
Showing 3 changed files with 344 additions and 2 deletions.
42 changes: 41 additions & 1 deletion integ/sagemaker_cleaner.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,11 @@
import datetime
from sagemaker_core.main.resources import Model, EndpointConfig, Endpoint
from sagemaker_core.main.resources import (
HyperParameterTuningJob,
Model,
EndpointConfig,
Endpoint,
TransformJob,
)


class SageMakerCleaner:
Expand Down Expand Up @@ -85,6 +91,40 @@ def cleanup_models(self, creation_time_before, creation_time_after):
self._track_resource(failed=1)
self._track_resource(deleted=1)

def cleanup_hyperparameter_tuningjob(self, creation_time_before, creation_time_after):
"""Deletes Models before a given timestamp
Args:
creation_time_before (datetime): timestamp for 'CreationTimeBefore' or 'CreatedBefore' boto3 parameter
creation_time_after (datetime): timestamp for 'CreationTimeAfter' or 'CreatedAfter' boto3 parameter
"""
tuning_jobs = HyperParameterTuningJob.get_all(
creation_time_before=creation_time_before, creation_time_after=creation_time_after
)
for tuning_job in tuning_jobs:
try:
tuning_job.delete()
except:
self._track_resource(failed=1)
self._track_resource(deleted=1)

def cleanup_transform_job(self, creation_time_before, creation_time_after):
"""Deletes Models before a given timestamp
Args:
creation_time_before (datetime): timestamp for 'CreationTimeBefore' or 'CreatedBefore' boto3 parameter
creation_time_after (datetime): timestamp for 'CreationTimeAfter' or 'CreatedAfter' boto3 parameter
"""
transform_jobs = TransformJob.get_all(
creation_time_before=creation_time_before, creation_time_after=creation_time_after
)
for transform_job in transform_jobs:
try:
transform_job.stop()
except:
self._track_resource(failed=1)
self._track_resource(deleted=1)

def _track_resource(self, deleted=0, failed=0):
"""Updates the resource tracker with # of deleted, or failed resources
Expand Down
6 changes: 5 additions & 1 deletion integ/test_codegen.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,11 @@
from sklearn.model_selection import train_test_split

from sagemaker_cleaner import handle_cleanup
from sagemaker_core.main.shapes import ContainerDefinition, ProductionVariant, ProfilerConfig
from sagemaker_core.main.shapes import (
ContainerDefinition,
ProductionVariant,
ProfilerConfig,
)
from sagemaker_core.main.resources import (
TrainingJob,
AlgorithmSpecification,
Expand Down
298 changes: 298 additions & 0 deletions integ/test_hyperparameter_tuning_job_and_transform_job.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,298 @@
import datetime
import logging
import time
import unittest
import pandas as pd
from io import StringIO

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from sagemaker_cleaner import handle_cleanup
from sagemaker_core.main.shapes import (
AutoParameter,
Autotune,
ContainerDefinition,
HyperParameterAlgorithmSpecification,
HyperParameterTrainingJobDefinition,
HyperParameterTuningJobConfig,
HyperParameterTuningJobObjective,
ParameterRanges,
ResourceLimits,
TransformDataSource,
TransformInput,
TransformOutput,
TransformResources,
TransformS3DataSource,
)
from sagemaker_core.main.resources import (
HyperParameterTuningJob,
TrainingJob,
TransformJob,
AlgorithmSpecification,
Channel,
DataSource,
S3DataSource,
OutputDataConfig,
ResourceConfig,
StoppingCondition,
Model,
)
from sagemaker_core.helper.session_helper import Session, get_execution_role

logger = logging.getLogger()

sagemaker_session = Session()
region = sagemaker_session.boto_region_name
role = get_execution_role()
bucket = sagemaker_session.default_bucket()

### Data preparation for test_hyperparameter_tuning_job and test_transform_job
data = sagemaker_session.read_s3_file(
f"sagemaker-example-files-prod-{region}", "datasets/tabular/synthetic/churn.txt"
)

df = pd.read_csv(StringIO(data))

df = df.drop("Phone", axis=1)
df["Area Code"] = df["Area Code"].astype(object)
df = df.drop(["Day Charge", "Eve Charge", "Night Charge", "Intl Charge"], axis=1)

model_data = pd.get_dummies(df)
model_data = pd.concat(
[
model_data["Churn?_True."],
model_data.drop(["Churn?_False.", "Churn?_True."], axis=1),
],
axis=1,
)
model_data = model_data.astype(float)

train_data2, validation_data = train_test_split(model_data, test_size=0.33, random_state=42)

validation_data, test_data2 = train_test_split(validation_data, test_size=0.33, random_state=42)

test_target_column = test_data2["Churn?_True."]
test_data2.drop(["Churn?_True."], axis=1, inplace=True)

train_data2.to_csv("train2.csv", header=False, index=False)
validation_data.to_csv("validation.csv", header=False, index=False)
test_data2.to_csv("test.csv", header=False, index=False)

s3_train_input = sagemaker_session.upload_data("train2.csv", bucket)
s3_validation_input = sagemaker_session.upload_data("validation.csv", bucket)
s3_test_input = sagemaker_session.upload_data("test.csv", bucket)

image2 = "246618743249.dkr.ecr.us-west-2.amazonaws.com/sagemaker-xgboost:1.7-1"
instance_type = "ml.m4.xlarge"
instance_count = 1
volume_size_in_gb = 30
max_runtime_in_seconds = 600


class TestSageMakerCore(unittest.TestCase):

def test_hyperparameter_tuning_job_and_transform_job(self):
############ Create training jobs resource
job_name = "xgboost-churn-" + time.strftime(
"%Y-%m-%d-%H-%M-%S", time.gmtime()
) # Name of training job
instance_type = "ml.m4.xlarge" # SageMaker instance type to use for training
instance_count = 1 # Number of instances to use for training
volume_size_in_gb = 30 # Amount of storage to allocate to training job
max_runtime_in_seconds = 600 # Maximum runtimt. Job exits if it doesn't finish before this
s3_output_path = f"s3://{bucket}" # bucket and optional prefix where the training job stores output artifacts, like model artifact.

hyper_parameters = {
"max_depth": "5",
"eta": "0.2",
"gamma": "4",
"min_child_weight": "6",
"subsample": "0.8",
"verbosity": "0",
"objective": "binary:logistic",
"num_round": "100",
}

training_job = TrainingJob.create(
training_job_name=job_name,
hyper_parameters=hyper_parameters,
algorithm_specification=AlgorithmSpecification(
training_image=image2, training_input_mode="File"
),
role_arn=role,
input_data_config=[
Channel(
channel_name="train",
content_type="csv",
data_source=DataSource(
s3_data_source=S3DataSource(
s3_data_type="S3Prefix",
s3_uri=s3_train_input,
s3_data_distribution_type="FullyReplicated",
)
),
),
Channel(
channel_name="validation",
content_type="csv",
data_source=DataSource(
s3_data_source=S3DataSource(
s3_data_type="S3Prefix",
s3_uri=s3_validation_input,
s3_data_distribution_type="FullyReplicated",
)
),
),
],
output_data_config=OutputDataConfig(s3_output_path=s3_output_path),
resource_config=ResourceConfig(
instance_type=instance_type,
instance_count=instance_count,
volume_size_in_gb=volume_size_in_gb,
),
stopping_condition=StoppingCondition(max_runtime_in_seconds=max_runtime_in_seconds),
)

training_job.wait()

########### Create and test HyperParameterTuningJob
tuning_job_name = "xgboost-tune-" + time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime())
max_number_of_training_jobs = 50
max_parallel_training_jobs = 5
max_runtime_in_seconds = 3600
s3_output_path = f"s3://{bucket}/tuningjob"

hyper_parameter_training_job_definition = HyperParameterTrainingJobDefinition(
role_arn=role,
algorithm_specification=HyperParameterAlgorithmSpecification(
training_image=image2, training_input_mode="File"
),
input_data_config=[
Channel(
channel_name="train",
content_type="csv",
data_source=DataSource(
s3_data_source=S3DataSource(
s3_data_type="S3Prefix",
s3_uri=s3_train_input,
s3_data_distribution_type="FullyReplicated",
)
),
),
Channel(
channel_name="validation",
content_type="csv",
data_source=DataSource(
s3_data_source=S3DataSource(
s3_data_type="S3Prefix",
s3_uri=s3_validation_input,
s3_data_distribution_type="FullyReplicated",
)
),
),
],
output_data_config=OutputDataConfig(s3_output_path=s3_output_path),
stopping_condition=StoppingCondition(max_runtime_in_seconds=max_runtime_in_seconds),
resource_config=ResourceConfig(
instance_type=instance_type,
instance_count=instance_count,
volume_size_in_gb=volume_size_in_gb,
),
)

tuning_job_config = HyperParameterTuningJobConfig(
strategy="Bayesian",
hyper_parameter_tuning_job_objective=HyperParameterTuningJobObjective(
type="Maximize", metric_name="validation:auc"
),
resource_limits=ResourceLimits(
max_number_of_training_jobs=max_number_of_training_jobs,
max_parallel_training_jobs=max_parallel_training_jobs,
max_runtime_in_seconds=3600,
),
training_job_early_stopping_type="Auto",
parameter_ranges=ParameterRanges(
auto_parameters=[
AutoParameter(name="max_depth", value_hint="5"),
AutoParameter(name="eta", value_hint="0.1"),
AutoParameter(name="gamma", value_hint="8"),
AutoParameter(name="min_child_weight", value_hint="2"),
AutoParameter(name="subsample", value_hint="0.5"),
AutoParameter(name="num_round", value_hint="50"),
]
),
)

tuning_job = HyperParameterTuningJob.create(
hyper_parameter_tuning_job_name=tuning_job_name,
autotune=Autotune(mode="Enabled"),
training_job_definition=hyper_parameter_training_job_definition,
hyper_parameter_tuning_job_config=tuning_job_config,
)

tuning_job.wait()

fetch_tuning_job = HyperParameterTuningJob.get(
hyper_parameter_tuning_job_name=tuning_job_name
)
assert (
fetch_tuning_job.training_job_definition.output_data_config.s3_output_path
== s3_output_path
)
assert fetch_tuning_job.hyper_parameter_tuning_job_config.strategy == "Bayesian"

creation_time_after = datetime.datetime.now() - datetime.timedelta(days=5)

resource_iterator = HyperParameterTuningJob.get_all(creation_time_after=creation_time_after)
tuning_jobs = [job.hyper_parameter_tuning_job_name for job in resource_iterator]

assert len(tuning_jobs) > 0
assert tuning_job_name in tuning_jobs

########### Create Model resource for transform job use
model_s3_uri = TrainingJob.get(
tuning_job.best_training_job.training_job_name
).model_artifacts.s3_model_artifacts
model_name_for_tranformjob = (
f'customer-churn-xgboost-{time.strftime("%H-%M-%S", time.gmtime())}'
)
customer_churn_model = Model.create(
model_name=model_name_for_tranformjob,
primary_container=ContainerDefinition(image=image2, model_data_url=model_s3_uri),
execution_role_arn=role,
)

########### Create and test Transform jobs
s3_output_path = f"s3://{bucket}/transform"
transform_job_name = "churn-prediction" + time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime())

transform_job = TransformJob.create(
transform_job_name=transform_job_name,
model_name=model_name_for_tranformjob,
transform_input=TransformInput(
data_source=TransformDataSource(
s3_data_source=TransformS3DataSource(
s3_data_type="S3Prefix", s3_uri=s3_test_input
)
),
content_type="text/csv",
),
transform_output=TransformOutput(s3_output_path=s3_output_path),
transform_resources=TransformResources(
instance_type=instance_type, instance_count=instance_count
),
)

transform_job.wait()

fetch_transform_job = TransformJob.get(transform_job_name=transform_job_name)
assert fetch_transform_job.transform_output.s3_output_path == s3_output_path

creation_time_after = datetime.datetime.now() - datetime.timedelta(days=5)

resource_iterator = TransformJob.get_all(creation_time_after=creation_time_after)
transform_jobs = [job.transform_job_name for job in resource_iterator]

assert len(transform_jobs) > 0
assert transform_job_name in transform_jobs

0 comments on commit e221c7f

Please sign in to comment.