Skip to content

bhkim94/cl-alfred

 
 

Repository files navigation

CL-ALFRED

Online Continual Learning for Interactive Instruction Following Agents
Byeonghwi Kim*, Minhyuk Seo*, Jonghyun Choi
ICLR 2024

CL-ALFRED is a benchmark that continuously learns new types of behaviors and environments for household tasks in ALFRED. CL-ALFRED provides two incremental learning setups: Behavior Incremental Learning (Behavior-IL) to learn novel behaviors (task types) and Environment Incremental Learning (Environment-IL) to learn to complete tasks in novel environments.

We provide the code of the baselines and CAMA. The code is built upon i-Blurry and ALFRED.

CL-ALFRED

Environment

Clone repository

git clone https://github.com/yonseivnl/cl-alfred.git
cd cl-alfred
export ALFRED_ROOT=$(pwd)

Install requirements

Due to different python version usage for training and evaluation, we need a conda env for each training and evaluation.

# Training environment
conda create -n cl-alfred-train python=3.8
conda activate cl-alfred-train
pip install -r requirements_train.txt
# Evaluation environment
conda create -n cl-alfred-eval python=3.6
conda activate cl-alfred-eval
pip install -r requirements_eval.txt

Install PyTorch

Install PyTorch from the official PyTorch site for both cl-alfred-train and cl-alfred-eval.

conda deactivate
conda activate cl-alfred-train
pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html

conda deactivate
conda activate cl-alfred-eval
pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html

Dataset Download

Clone the Hugging Face repository to the path data/json_feat_2.1.0. This should include numberized annotation files, ResNet-18 features, the vocabulary file, etc.
Note: It takes quite a large space (~1.6TB).

git clone https://huggingface.co/byeonghwikim/abp_dataset data/json_feat_2.1.0

Training

First, activate the training environment cl-alfred-train.

conda deactivate
conda activate cl-alfred-train

To train a model, run train_seq2seq.py with the hyper-parameters below.

  • incremental_setup: behavior_il (Behavior-IL) or environment_il (Environment-IL)
  • mode: Continual learning methods
    • cama: Confidence-Aware Moving Average
    • cama_nodc: CAMA without Determined Cofficients (CAMA w/o DC)
    • xder eXtended-DER (Boschini et al. IEEE TPAMI'22)
    • der: Dark Experience Replay (Buzzega et al. NeurIPS'20)
    • clib: Continual Learning for i-Blurry (Koh et al. ICLR'22)
    • mir: Maximally Interfered Retrieval (Aljundi et al. NeurIPS'19)
    • er: Experience Replay (Rolnick et al. NeurIPS'19)
    • ewc++: Elastic (Kirkpatrick et al. PNAS'17)
  • stream_seed: random seed for a behavior/environment sequence
  • dout: a path to save a model in
python models/train/train_seq2seq.py        \
    --incremental_setup <incremental_setup> \
    --mode <mode>                           \
    --stream_seed <stream_seed>             \
    --dout <path_to_save_weight>

Note: All hyperparameters used for the experiments in the paper are set as default.

For example, if you want train CAMA for the Behavior-IL setup with a stream seed 1 and save the weights in exp/behavior_il/cama/s1, the command may look like below.

python models/train/train_seq2seq.py        \
    --incremental_setup behavior_il         \
    --mode cama                             \
    --stream_seed 1                         \
    --dout exp/behavior_il/cama/s1

Evaluation

First, activate the evaluation environment cl-alfred-eval.

conda deactivate
conda activate cl-alfred-eval

To evaluate a model, run eval_seq2seq.py with the hyper-parameters below.

  • model_path: the path of a saved model
  • eval_split: valid_seen (Valid Seen) or valid_unseen (Valid Unseen)
  • x_display: the number of your display (check echo $DISPLAY in your command)
  • incremental_setup: behavior_il (Behavior-IL) or environment_il (Environment-IL)
  • incremental_type: the current incremental type learned
    • Behavior-IL: look_at_obj_in_light, pick_heat_then_place_in_recep, pick_two_obj_and_place, pick_cool_then_place_in_recep, pick_and_place_simple, pick_clean_then_place_in_recep, pick_and_place_with_movable_recep
    • Environment-IL: Kitchen, Livingroom, Bedroom, Bathroom
  • stream_seed: the seed number of a random stream (1, 2, 3, 4, and 5)
  • num_threads: the number of simulators used for evaluation
  • gpu: the usage of GPU during evaluation
python models/eval/eval_seq2seq.py --gpu      \
    --model_path <model_path>                 \
    --eval_split <eval_split>                 \
    --incremental_setup <incremental_setup>   \
    --num_threads <num_threads>               \
    --x_display <x_display>                   \
    --gpu

Note: All hyperparameters used for the experiments in the paper are set as default.
Note: For cpu-only evaluation, remove the option --gpu.

If you want to evaluate our model saved in exp/behavior_il/cama/s1/net_epoch_000002251_look_at_obj_in_light.pth in the seen validation for the current task look_at_obj_in_light of the Behavior-IL setup trained with a random stream sequence 1, you may use the command below.

python models/eval/eval_seq2seq.py                                                    \
    --model_path exp/behavior_il/cama/s1/net_epoch_000002251_look_at_obj_in_light.pth \
    --eval_split valid_seen                                                           \
    --incremental_setup behavior_il                                                   \
    --incremental_type look_at_obj_in_light                                           \
    --stream_seed 1                                                                   \
    --num_threads 3                                                                   \
    --x_display 1                                                                     \
    --gpu

Note: Choose your available display number x_display.
Note: Adjust your thread number based on your system num_threads.

Hardware

Trained and tested on:

  • GPU - NVIDIA RTX A6000 (48GB)
  • CUDA - CUDA 12.0
  • CPU - 12th Gen Intel(R) Core(TM) i7-12700K
  • RAM - 64GB
  • OS - Ubuntu 20.04

License

GNU GENERAL PUBLIC LICENSE

Citation

CL-ALFRED

@inproceedings{kim2024online,
  title={Online Continual Learning for Interactive Instruction Following Agents},
  author={Kim, Byeonghwi and Seo, Minhyuk and Choi, Jonghyun},
  booktitle={ICLR},
  year={2024}
}

i-Blurry

@inproceedings{koh2022online,
  title={Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference},
  author={Koh, Hyunseo and Kim, Dahyun and Ha, Jung-Woo and Choi, Jonghyun},
  booktitle={ICLR},
  year={2022}
}

ABP

@inproceedings{kim2021agent,
  author    = {Kim, Byeonghwi and Bhambri, Suvaansh and Singh, Kunal Pratap and Mottaghi, Roozbeh and Choi, Jonghyun},
  title     = {Agent with the Big Picture: Perceiving Surroundings for Interactive Instruction Following},
  booktitle = {Embodied AI Workshop @ CVPR 2021},
  year      = {2021},
}

ALFRED

@inproceedings{ALFRED20,
  title ={{ALFRED: A Benchmark for Interpreting Grounded
           Instructions for Everyday Tasks}},
  author={Mohit Shridhar and Jesse Thomason and Daniel Gordon and Yonatan Bisk and
          Winson Han and Roozbeh Mottaghi and Luke Zettlemoyer and Dieter Fox},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2020},
  url  = {https://arxiv.org/abs/1912.01734}
}

Acknowlegment

This work was partly supported by the NRF grant (No.2022R1A2C4002300, 15%) and IITP grants (No.2020-0-01361 (10%, Yonsei AI), No.2021-0-01343 (5%, SNU AI), No.2022-0-00077 (10%), No.2022-0-00113 (20%), No.2022-0-00959 (15%), No.2022-0-00871 (15%), No.2021-0-02068 (5%, AI Innov. Hub), No.2022-0-00951 (5%)) funded by the Korea government (MSIT).

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 46.3%
  • C 45.4%
  • PDDL 4.7%
  • Yacc 3.1%
  • Lex 0.4%
  • Makefile 0.1%