-
Notifications
You must be signed in to change notification settings - Fork 3
Adding defog Restaurants database for testing #449
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 6 commits
01b3816
4efbfa2
9ff71d0
fa43a5b
ef4d02a
9f32785
bbdf79d
5b8fe65
27b2507
5497013
a310b4e
91ca1c2
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -4432,5 +4432,232 @@ | |
| "synonyms": ["publication's author", "work's author"] | ||
| } | ||
| ] | ||
| }, | ||
| { | ||
| "name": "Restaurants", | ||
| "version": "V2", | ||
| "collections": [ | ||
| { | ||
| "name": "geographies", | ||
| "type": "simple table", | ||
| "table path": "main.geographic", | ||
| "unique properties": [ | ||
| "city_name" | ||
| ], | ||
| "properties": [ | ||
| { | ||
| "name": "city_name", | ||
| "type": "table column", | ||
| "column name": "city_name", | ||
| "data type": "string", | ||
| "description": "The name of the city", | ||
| "sample values": ["Los Angeles", "Miami"], | ||
| "synonyms": ["city"] | ||
| }, | ||
| { | ||
| "name": "county", | ||
| "type": "table column", | ||
| "column name": "county", | ||
| "data type": "string", | ||
| "description": "The name of the county", | ||
| "sample values": ["New York", "San Francisco"], | ||
|
||
| "synonyms": ["division"] | ||
| }, | ||
| { | ||
| "name": "region", | ||
| "type": "table column", | ||
| "column name": "region", | ||
| "data type": "string", | ||
| "description": "The name of the region", | ||
| "sample values": ["California", "New York"], | ||
| "synonyms": ["territory"] | ||
| } | ||
| ], | ||
| "description": "Contains records of geographic locations including city name, county and region", | ||
| "synonyms": ["locations", "places"] | ||
| }, | ||
| { | ||
| "name": "locations", | ||
| "type": "simple table", | ||
| "table path": "main.location", | ||
| "unique properties": [ | ||
| "restaurant_id" | ||
|
||
| ], | ||
| "properties": [ | ||
| { | ||
| "name": "restaurant_id", | ||
| "type": "table column", | ||
| "column name": "restaurant_id", | ||
| "data type": "numeric", | ||
| "description": "Unique identifier for each restaurant", | ||
| "sample values": [1, 2, 3], | ||
| "synonyms": ["restaurant_id", "diner_id"] | ||
| }, | ||
| { | ||
| "name": "house_number", | ||
| "type": "table column", | ||
| "column name": "house_number", | ||
| "data type": "numeric", | ||
| "description": "The number assigned to the building where the restaurant is located", | ||
| "sample values": [123, 789, 12], | ||
| "synonyms": ["street_number"] | ||
| }, | ||
| { | ||
| "name": "street_name", | ||
| "type": "table column", | ||
| "column name": "street_name", | ||
| "data type": "string", | ||
| "description": "The name of the street where the restaurant is located", | ||
| "sample values": ["Main St", "Oak St", "Pine Ave"], | ||
| "synonyms": ["avenue"] | ||
| }, | ||
| { | ||
| "name": "city_name", | ||
| "type": "table column", | ||
| "column name": "city_name", | ||
| "data type": "string", | ||
| "description": "The name of the city where the restaurant is located", | ||
| "sample values": ["New York", "Los Angeles", "Miami"], | ||
| "synonyms": [] | ||
| } | ||
| ], | ||
| "description": "Contains the location of each restaurant", | ||
| "synonyms": ["address"] | ||
| }, | ||
| { | ||
| "name": "restaurants", | ||
| "type": "simple table", | ||
| "table path": "main.restaurant", | ||
| "unique properties": [ | ||
| "id_" | ||
| ], | ||
| "properties": [ | ||
| { | ||
| "name": "id_", | ||
| "type": "table column", | ||
| "column name": "id", | ||
| "data type": "numeric", | ||
| "description": "Unique identifier for each restaurant", | ||
| "sample values": [1, 2, 3], | ||
| "synonyms": ["identifier"] | ||
| }, | ||
| { | ||
| "name": "name", | ||
| "type": "table column", | ||
| "column name": "name", | ||
| "data type": "string", | ||
| "description": "The name of the restaurant", | ||
| "sample values": ["The Pasta House", "The Burger Joint", "The Seafood Shack"], | ||
| "synonyms": ["restaurant"] | ||
| }, | ||
| { | ||
| "name": "food_type", | ||
| "type": "table column", | ||
| "column name": "food_type", | ||
| "data type": "string", | ||
| "description": "The type of food served at the restaurant", | ||
| "sample values": ["Seafood", "American", "Japanese"], | ||
| "synonyms": ["specialty", "menu type"] | ||
| }, | ||
| { | ||
| "name": "city_name", | ||
| "type": "table column", | ||
| "column name": "city_name", | ||
| "data type": "string", | ||
| "description": "The city where the restaurant is located", | ||
| "sample values": ["San Francisco", "New York", "Miami"], | ||
| "synonyms": ["locality", "town"] | ||
| }, | ||
| { | ||
| "name": "rating", | ||
| "type": "table column", | ||
| "column name": "rating", | ||
| "data type": "numeric", | ||
| "description": "The rating of the restaurant on a scale of 0 to 5", | ||
| "sample values": [4.2, 3.9, 4.5], | ||
| "synonyms": ["score", "review"] | ||
| } | ||
| ], | ||
| "description": "Contains the information of the restaurants", | ||
| "synonyms": ["diner"] | ||
| } | ||
| ], | ||
| "relationships": [ | ||
| { | ||
| "type": "simple join", | ||
| "name": "locations", | ||
|
||
| "parent collection": "geographies", | ||
| "child collection": "locations", | ||
| "singular": false, | ||
| "always matches": false, | ||
| "keys": { | ||
| "city_name": [ | ||
| "city_name" | ||
| ] | ||
| }, | ||
| "description": "All restaurant locations related to this geographic", | ||
|
||
| "synonyms": ["restaurant locations"] | ||
| }, | ||
| { | ||
| "type": "reverse", | ||
| "name": "geographic", | ||
| "original parent": "geographies", | ||
| "original property": "locations", | ||
| "singular": true, | ||
| "always matches": false, | ||
| "description": "The geographic linked with this location", | ||
| "synonyms": ["geography", "town"] | ||
|
||
| }, | ||
| { | ||
| "type": "simple join", | ||
| "name": "locations", | ||
| "parent collection": "restaurants", | ||
| "child collection": "locations", | ||
| "singular": false, | ||
| "always matches": false, | ||
|
||
| "keys": { | ||
| "id_": [ | ||
| "restaurant_id" | ||
| ] | ||
| }, | ||
| "description": "All locations of this restaurant", | ||
| "synonyms": ["stores", "units"] | ||
| }, | ||
| { | ||
| "type": "reverse", | ||
| "name": "restaurant", | ||
| "original parent": "restaurants", | ||
| "original property": "locations", | ||
| "singular": true, | ||
| "always matches": false, | ||
| "description": "The restaurant related to this location", | ||
| "synonyms": ["franchise", "chain"] | ||
|
Comment on lines
4628
to
4634
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same here, all of these need to be changed. |
||
| }, | ||
| { | ||
| "type": "simple join", | ||
| "name": "restaurants", | ||
| "parent collection": "geographies", | ||
| "child collection": "restaurants", | ||
| "singular": false, | ||
| "always matches": false, | ||
| "keys": { | ||
| "city_name": [ | ||
| "city_name" | ||
| ] | ||
| }, | ||
| "description": "The restaurants located in this geographic territory", | ||
| "synonyms": ["diners"] | ||
| }, | ||
| { | ||
| "type": "reverse", | ||
| "name": "geographic", | ||
| "original parent": "geographies", | ||
| "original property": "restaurants", | ||
| "singular": true, | ||
| "always matches": false, | ||
|
||
| "description": "The geographic territory related to this restaurant", | ||
| "synonyms": ["location", "territory"] | ||
| } | ||
| ] | ||
| } | ||
| ] | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Since each row represents a unique city, I'd advise changing the name of the collection to
cities, and altering the description accordingly.