Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

New eqs #1

Merged
merged 26 commits into from
Feb 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions Equations.md
Original file line number Diff line number Diff line change
@@ -1,13 +1,13 @@
**Equations**

$$ dW/dt = W*( \frac{(B^x*aB)}{(1 + M^x*hM* aM + B^x*hB* aB)} + \frac{(u*aM*M^x)}{(
1 + M^x*hM* aM + B^x*hB* aB)} - d - \omega)$$
$$ dB/dt = B*(rb - \frac{(rb*\alpha_{bb} *B)}{Kb} - \frac{(B^{x - 1}*W *aB)}{(
1 + M^x*hM* aM + B^x*hB* aB)} - \frac{(rb*\alpha_{bm} *M)}{Kb} )$$
$$ dM/dt = M*(rm - \frac{(rm*\alpha_{mm}*M)}{Km} - \frac{(M^{x - 1}*W *aM)}{(
1 + B^x*hB* aB + M^x*hM* aM)} - \frac{(rm*\alpha_{mb}*B)}{Km} - \mu$$
Moose:
$$dM/dt = M (r_m - \frac{(r_m \alpha_{mm} M)}{K_m} - \frac{(M^{x - 1} W a_M)}{(1 + B^x h_B a_B + M^x h_M a_M)} - \frac{(r_m \alpha_{mb} B)}{K_m} - \mu)$$

Caribou:
$$dB/dt = B(r_b- \frac{r_b \alpha_{bb} B}{K_b}- \frac{B^{x - 1} W a_B}{1 + M^x h_M a_M + B^x h_B a_B} - \frac{r_b \alpha_{bm} M}{K_b})$$

Wolves:
$$dW/dt = W(\frac{B^x a_B}{1 + M^x h_M aM + B^x h_B a_B} + \frac{u a_M M^x}{1 + M^x h_M a_M + B^x h_B a_B} - d - \omega)$$

**Parameter Definitions**

Expand Down
122 changes: 64 additions & 58 deletions src/rl4caribou/envs/caribou.py
Original file line number Diff line number Diff line change
@@ -1,68 +1,78 @@
import gymnasium as gym
import numpy as np


# pop = elk, caribou, wolves
# Caribou Scenario
# Population dynamics
def dynamics(pop, effort, harvest_fn, p, timestep=1):
pop = harvest_fn(pop, effort)
X, Y, Z = pop[0], pop[1], pop[2]

K = p["K"] # - 0.2 * np.sin(2 * np.pi * timestep / 3200)
D = p["D"] + 0.5 * np.sin(2 * np.pi * timestep / 3200)
beta = p["beta"] + 0.2 * np.sin(2 * np.pi * timestep / 3200)

X += (
p["r_x"] * X * (1 - (X + p["tau_xy"] * Y) / K)
- (1 - D) * beta * Z * (X**2) / (p["v0"] ** 2 + X**2)
+ p["sigma_x"] * X * np.random.normal()
)

Y += (
p["r_y"] * Y * (1 - (Y + p["tau_yx"] * X) / K)
- D * beta * Z * (Y**2) / (p["v0"] ** 2 + Y**2)
+ p["sigma_y"] * Y * np.random.normal()
)

Z += (
p["alpha"]
* beta
* Z
* (
(1 - D) * (X**2) / (p["v0"] ** 2 + X**2)
+ D * (Y**2) / (p["v0"] ** 2 + Y**2)
)
- p["dH"] * Z
+ p["sigma_z"] * Z * np.random.normal()
)

pop = np.array([X, Y, Z], dtype=np.float32)
pop = np.clip(pop, [0, 0, 0], [np.Inf, np.Inf, np.Inf])
return pop


initial_pop = [0.5, 0.5, 0.2]
M, B, W = pop[0], pop[1], pop[2] # moose, caribou, wolf
denominator = (1 + B**p['x'] * p['h_B'] * p['a_B'] + M**p['x'] * p['h_M'] * p['a_M'])

return np.float32([
M + M * (
p['r_m'] * (1 - p['alpha_mm'] * M / p['K_m'])
- M**(p['x'] - 1) * W * p['a_M'] / denominator
- p['r_m'] * p['alpha_mb'] * B / p['K_m']
+ p['sigma_M'] * np.random.normal()
),
#
B + B * (
p['r_b'] * (1 - p['alpha_bb'] * B / p['K_b'])
- B**(p['x']-1) * W * p['a_B'] / denominator
- p['r_b'] * p['alpha_bm'] * M / p['K_b']
+ p['sigma_B'] * np.random.normal()
),
#
W + W * (
B**p['x'] * p['a_B'] / denominator
+ M**p['x'] * p['a_M'] * p['u'] / denominator
- p['d']
+ p['sigma_W'] * np.random.normal()
),
])


##
## Param vals taken from https://doi.org/10.1016/j.ecolmodel.2019.108891
##
am = {"current": 15.32, "full_rest": 11.00}
ab = {"current": 51.45, "full_rest": 26.39}

parameters = {
"r_x": np.float32(0.13),
"r_y": np.float32(0.2),
"K": np.float32(1),
"beta": np.float32(0.1),
"v0": np.float32(0.1),
"D": np.float32(0.8),
"tau_yx": np.float32(0.7),
"tau_xy": np.float32(0.2),
"alpha": np.float32(0.4),
"dH": np.float32(0.03),
"sigma_x": np.float32(0.05),
"sigma_y": np.float32(0.05),
"sigma_z": np.float32(0.05),
"r_m": np.float32(0.39),
"r_b": np.float32(0.30),
#
"alpha_mm": np.float32(1),
"alpha_bb": np.float32(1),
"alpha_bm": np.float32(1),
"alpha_mb": np.float32(1),
#
"a_M": am["current"],
"a_B": ab["current"],
#
"K_m": np.float32(1.1),
"K_b": np.float32(0.40),
#
"h_M": np.float32(0.112),
"h_B": np.float32(0.112),
#
"x": np.float32(2),
"u": np.float32(1),
"d": np.float32(1),
#
"sigma_M": np.float32(0.1),
"sigma_B": np.float32(0.1),
"sigma_W": np.float32(0.1),
}


##
## Harvest, utility
##
def harvest(pop, effort):
q0 = 0.5 # catchability coefficients -- erradication is impossible
q2 = 0.5
pop[0] = pop[0] * (1 - effort[0] * q0) # pop 0, elk
pop[0] = pop[0] * (1 - effort[0] * q0) # pop 0, moose
pop[2] = pop[2] * (1 - effort[1] * q2) # pop 2, wolves
return pop

Expand All @@ -74,10 +84,6 @@ def utility(pop, effort):
benefits -= 1
return benefits - costs


import gymnasium as gym


class Caribou(gym.Env):
"""A 3-species ecosystem model with two control actions"""

Expand All @@ -90,15 +96,15 @@ def __init__(self, config=None):
self.threshold = config.get("threshold", np.float32(1e-4))
self.init_sigma = config.get("init_sigma", np.float32(1e-3))
self.training = config.get("training", True)
self.initial_pop = config.get("initial_pop", initial_pop)
self.initial_pop = config.get("initial_pop", np.ones(3, dtype=np.float32))
self.parameters = config.get("parameters", parameters)
self.dynamics = config.get("dynamics", dynamics)
self.harvest = config.get("harvest", harvest)
self.utility = config.get("utility", utility)
self.observe = config.get(
"observe", lambda state: state
) # default to perfectly observed case
self.bound = 2 * self.parameters["K"]
self.bound = 2

self.action_space = gym.spaces.Box(
np.array([-1, -1], dtype=np.float32),
Expand Down
Loading