Skip to content

bonitoo-io/ipython-flux

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ipython-flux

https://circleci.com/gh/bonitoo-io/ipython-flux.svg?style=svg
Author:Robert Hajek, Bonitoo.io

Introduces a %flux (or %%flux) magic.

Connect to a InfluxDB and run Flux commands within IPython or IPython Notebook.

screenshot of ipython-flux in the Notebook

Examples

In [1]: %load_ext flux

In [2]: %%flux http://localhost:9999 --token "my-token" --org my-org
   ...: from(bucket: "apm_metricset")
   ...:   |> range(start: v.timeRangeStart, stop: v.timeRangeStop)
   ...:   |> filter(fn: (r) => r["_measurement"] == "apm_metricset")
   ...:   |> filter(fn: (r) => r["_field"] == "samples_system.process.cpu.total.norm.pct")
   ...:
Out[2]: ...

After the first connection, connect info can be omitted:

In [3]: %flux
   ...: from(bucket: "apm_metricset")
   ...:   |> range(start: v.timeRangeStart, stop: v.timeRangeStop)
   ...:   |> filter(fn: (r) => r["_measurement"] == "apm_metricset")
   ...:   |> filter(fn: (r) => r["_field"] == "samples_system.process.cpu.total.norm.pct")

Out[8]: ...

If no connect string is supplied, %flux will use environment variables INFLUXDB_V2_URL, INFLUXDB_V2_ORG, INFLUXDB_V2_TOKEN to create connection into InfluxDB.

Ordinary IPython assignment works for single-line %flux queries:

In [12]: result = %flux from(bucket: "my-bucket")  |> range(start: 0)

The << operator captures query results in a local variable, and can be used in multi-line %%flux:

In [19]: %%flux my_dataset <<
    ...: from(bucket: "my-bucket")
    ...: |> range(start: -30m)
    ...: |> filter(fn: (r) => r["_measurement"] == "cpu")
    ...: |> filter(fn: (r) => r["_field"] == "usage_idle" or r["_field"] == "usage_system" or r["_field"] == "usage_user")
    ...: |> filter(fn: (r) => r["cpu"] == "cpu-total")
    ...: |> drop(columns: ["_start", "_stop", "_result", "_measurement", "table", "_result"])
    ...: |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")

The result of the Flux command is automatically converted into Pandas dataframe. It is often useful to use Flux functions fieldsAsCol() or pivot() to convert data containing multiple timeseries into one dataset.

Persist dataframe

The --persist argument, with the name of a DataFrame object in memory will create a measurement in the database from the named DataFrame.

In [1]: %flux --persist <data_frame_variable_name> --bucket my-bucket --measurement <new measurement name> --tags tag_column1,tag_column2

Options

-l / --connections
List all active connections
-t / --token
InfluxDB token
-o / --org
InfluxDB org
--timeout
InfluxDB query timeout in milliseconds (default timeout is 10_000 ms)
-f / --file <path>
Run Flux from file at this path
-x / --close <session-name>
Close named connection

Persist options

-p / --persist
Create a measurement in the database from the named DataFrame
-b / --bucket
target bucket name
-T / --tags
comma separated list of columns that will be stored as tags, rest of columns will be stored as fields
-m / --measurement
optional, target measurement name, if not specified measurement is taken from dataframe name

Installing

Install the lastest release with:

pip install ipython-flux

or download from https://github.com/bonitoo-io/ipython-flux and:

cd ipython-flux
sudo python setup.py install

Enable IPython flux magic extension in Jupyter notebook using

In [1]: %load_ext flux

Development

https://github.com/bonitoo-io/ipython-flux