Skip to content

Commit

Permalink
refactor(expression): use std::invoke and add types to functional o…
Browse files Browse the repository at this point in the history
…bjects to catch type errors
  • Loading branch information
amitsingh19975 committed Feb 15, 2022
1 parent 51674d5 commit b7de038
Show file tree
Hide file tree
Showing 3 changed files with 129 additions and 53 deletions.
6 changes: 3 additions & 3 deletions include/boost/numeric/ublas/tensor/expression.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -181,8 +181,8 @@ struct binary_tensor_expression
[[nodiscard]] constexpr auto const& left_expr() const noexcept{ return cast_tensor_expression(el); }
[[nodiscard]] constexpr auto const& right_expr() const noexcept{ return cast_tensor_expression(er); }

[[nodiscard]] inline
constexpr decltype(auto) operator()(size_type i) const { return op(left_expr()(i), right_expr()(i)); }
[[nodiscard]] inline constexpr
decltype(auto) operator()(size_type i) const { return std::invoke(op, left_expr()(i), right_expr()(i)); }

protected:
/**
Expand Down Expand Up @@ -255,7 +255,7 @@ struct unary_tensor_expression
[[nodiscard]] constexpr auto const& expr() const noexcept{ return cast_tensor_expression(e); }

[[nodiscard]] inline constexpr
decltype(auto) operator()(size_type i) const { return op(expr()(i)); }
decltype(auto) operator()(size_type i) const { return std::invoke(op, expr()(i)); }

protected:
/**
Expand Down
83 changes: 54 additions & 29 deletions include/boost/numeric/ublas/tensor/operators_arithmetic.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -76,9 +76,10 @@ inline
constexpr auto operator*( EL&& lhs, ER&& rhs ) noexcept
{
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<EL>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_binary_tensor_expression<tensor_type>(
std::forward<EL>(lhs), std::forward<ER>(rhs), std::multiplies<>{}
std::forward<EL>(lhs), std::forward<ER>(rhs), std::multiplies<value_type>{}
);
}

Expand All @@ -91,9 +92,10 @@ inline
constexpr auto operator+( EL&& lhs, ER&& rhs ) noexcept
{
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<EL>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_binary_tensor_expression<tensor_type>(
std::forward<EL>(lhs), std::forward<ER>(rhs), std::plus<>{}
std::forward<EL>(lhs), std::forward<ER>(rhs), std::plus<value_type>{}
);
}

Expand All @@ -106,9 +108,10 @@ inline
constexpr auto operator-( EL&& lhs, ER&& rhs ) noexcept
{
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<EL>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_binary_tensor_expression<tensor_type>(
std::forward<EL>(lhs), std::forward<ER>(rhs), std::minus<>{}
std::forward<EL>(lhs), std::forward<ER>(rhs), std::minus<value_type>{}
);
}

Expand All @@ -121,9 +124,10 @@ inline
constexpr auto operator/( EL&& lhs, ER&& rhs ) noexcept
{
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<EL>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_binary_tensor_expression<tensor_type>(
std::forward<EL>(lhs), std::forward<ER>(rhs), std::divides<>{}
std::forward<EL>(lhs), std::forward<ER>(rhs), std::divides<value_type>{}
);
}

Expand All @@ -136,9 +140,10 @@ inline
constexpr auto operator*( EL&& lhs, ER&& rhs ) noexcept
{
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<ER>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_binary_tensor_expression<tensor_type>(
std::forward<EL>(lhs), std::forward<ER>(rhs), std::multiplies<>{}
std::forward<EL>(lhs), std::forward<ER>(rhs), std::multiplies<value_type>{}
);
}

Expand All @@ -151,9 +156,10 @@ inline
constexpr auto operator+( EL&& lhs, ER&& rhs ) noexcept
{
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<ER>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_binary_tensor_expression<tensor_type>(
std::forward<EL>(lhs), std::forward<ER>(rhs), std::plus<>{}
std::forward<EL>(lhs), std::forward<ER>(rhs), std::plus<value_type>{}
);
}

Expand All @@ -166,9 +172,10 @@ inline
constexpr auto operator-( EL&& lhs, ER&& rhs ) noexcept
{
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<ER>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_binary_tensor_expression<tensor_type>(
std::forward<EL>(lhs), std::forward<ER>(rhs), std::minus<>{}
std::forward<EL>(lhs), std::forward<ER>(rhs), std::minus<value_type>{}
);
}

Expand All @@ -180,9 +187,10 @@ template <typename EL, typename ER>
inline constexpr auto operator/( EL&& lhs, ER&& rhs ) noexcept
{
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<ER>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_binary_tensor_expression<tensor_type>(
std::forward<EL>(lhs), std::forward<ER>(rhs), std::divides<>{}
std::forward<EL>(lhs), std::forward<ER>(rhs), std::divides<value_type>{}
);
}

Expand All @@ -204,7 +212,7 @@ inline constexpr auto operator+( EL&& lhs, ER&& rhs ) noexcept
);

return boost::numeric::ublas::detail::make_binary_tensor_expression<ltensor_t> (
std::forward<EL>(lhs), std::forward<ER>(rhs), [](auto const& l, auto const& r){ return l + r; }
std::forward<EL>(lhs), std::forward<ER>(rhs), std::plus<lvalue_t>{}
);
}

Expand All @@ -227,7 +235,7 @@ inline constexpr auto operator-( EL&& lhs, ER&& rhs ) noexcept
);

return boost::numeric::ublas::detail::make_binary_tensor_expression<ltensor_t> (
std::forward<EL>(lhs), std::forward<ER>(rhs), [](auto const& l, auto const& r){ return l - r; }
std::forward<EL>(lhs), std::forward<ER>(rhs), std::minus<lvalue_t>{}
);
}

Expand All @@ -249,7 +257,7 @@ inline constexpr auto operator*( EL&& lhs, ER&& rhs ) noexcept
);

return boost::numeric::ublas::detail::make_binary_tensor_expression<ltensor_t> (
std::forward<EL>(lhs), std::forward<ER>(rhs), [](auto const& l, auto const& r){ return l * r; }
std::forward<EL>(lhs), std::forward<ER>(rhs), std::multiplies<lvalue_t>{}
);
}

Expand All @@ -271,7 +279,7 @@ inline constexpr auto operator/( EL&& lhs, ER&& rhs ) noexcept
);

return boost::numeric::ublas::detail::make_binary_tensor_expression<ltensor_t> (
std::forward<EL>(lhs), std::forward<ER>(rhs), [](auto const& l, auto const& r){ return l / r; }
std::forward<EL>(lhs), std::forward<ER>(rhs), std::divides<lvalue_t>{}
);
}

Expand All @@ -284,10 +292,11 @@ inline constexpr auto operator+(
ER&& rhs
) noexcept {
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<ER>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_unary_tensor_expression<tensor_type> (
std::forward<ER>(rhs),
[lhs](auto const& r){ return lhs + r; }
[lhs](value_type const& r){ return lhs + r; }
);
}

Expand All @@ -298,10 +307,11 @@ inline constexpr auto operator-(
ER&& rhs
) noexcept {
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<ER>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_unary_tensor_expression<tensor_type> (
std::forward<ER>(rhs),
[lhs](auto const& r){ return lhs - r; }
[lhs](value_type const& r){ return lhs - r; }
);
}

Expand All @@ -312,10 +322,11 @@ inline constexpr auto operator*(
ER&& rhs
) noexcept {
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<ER>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_unary_tensor_expression<tensor_type> (
std::forward<ER>(rhs),
[lhs](auto const& r){ return lhs * r; }
[lhs](value_type const& r){ return lhs * r; }
);
}

Expand All @@ -326,10 +337,11 @@ inline constexpr auto operator/(
ER&& rhs
) noexcept {
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<ER>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_unary_tensor_expression<tensor_type> (
std::forward<ER>(rhs),
[lhs](auto const& r){ return lhs / r; }
[lhs](value_type const& r){ return lhs / r; }
);
}

Expand All @@ -340,10 +352,11 @@ inline constexpr auto operator+(
typename boost::numeric::ublas::detail::real_expression_type_t<EL>::value_type rhs
) noexcept {
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<EL>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_unary_tensor_expression<tensor_type> (
std::forward<EL>(lhs),
[rhs] (auto const& l) { return l + rhs; }
[rhs] (value_type const& l) { return l + rhs; }
);
}

Expand All @@ -354,10 +367,11 @@ inline constexpr auto operator-(
typename boost::numeric::ublas::detail::real_expression_type_t<EL>::value_type rhs
) noexcept {
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<EL>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_unary_tensor_expression<tensor_type> (
std::forward<EL>(lhs),
[rhs] (auto const& l) { return l - rhs; }
[rhs] (value_type const& l) { return l - rhs; }
);
}

Expand All @@ -368,10 +382,11 @@ inline constexpr auto operator*(
typename boost::numeric::ublas::detail::real_expression_type_t<EL>::value_type rhs
) noexcept {
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<EL>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_unary_tensor_expression<tensor_type> (
std::forward<EL>(lhs),
[rhs] (auto const& l) { return l * rhs; }
[rhs] (value_type const& l) { return l * rhs; }
);
}

Expand All @@ -382,10 +397,11 @@ inline constexpr auto operator/(
typename boost::numeric::ublas::detail::real_expression_type_t<EL>::value_type rhs
) noexcept {
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<EL>;
using value_type = typename tensor_type::value_type;

return boost::numeric::ublas::detail::make_unary_tensor_expression<tensor_type> (
std::forward<EL>(lhs),
[rhs] (auto const& l) { return l / rhs; }
[rhs] (value_type const& l) { return l / rhs; }
);
}

Expand All @@ -394,7 +410,8 @@ inline constexpr auto& operator += (
boost::numeric::ublas::tensor_core<T>& lhs,
boost::numeric::ublas::detail::tensor_expression<boost::numeric::ublas::tensor_core<T>,D> const& expr
){
boost::numeric::ublas::detail::eval(lhs, expr(), [](auto& l, auto const& r) { l+=r; } );
using value_type = typename boost::numeric::ublas::tensor_core<T>::value_type;
boost::numeric::ublas::detail::eval(lhs, expr(), [](value_type& l, value_type const& r) { l+=r; } );
return lhs;
}

Expand All @@ -403,7 +420,8 @@ inline constexpr auto& operator -= (
boost::numeric::ublas::tensor_core<T>& lhs,
const boost::numeric::ublas::detail::tensor_expression<boost::numeric::ublas::tensor_core<T>,D> &expr
){
boost::numeric::ublas::detail::eval(lhs, expr(), [](auto& l, auto const& r) { l-=r; } );
using value_type = typename boost::numeric::ublas::tensor_core<T>::value_type;
boost::numeric::ublas::detail::eval(lhs, expr(), [](value_type& l, value_type const& r) { l-=r; } );
return lhs;
}

Expand All @@ -412,7 +430,8 @@ inline constexpr auto& operator *= (
boost::numeric::ublas::tensor_core<T>& lhs,
const boost::numeric::ublas::detail::tensor_expression<boost::numeric::ublas::tensor_core<T>,D> &expr
){
boost::numeric::ublas::detail::eval(lhs, expr(), [](auto& l, auto const& r) { l*=r; } );
using value_type = typename boost::numeric::ublas::tensor_core<T>::value_type;
boost::numeric::ublas::detail::eval(lhs, expr(), [](value_type& l, value_type const& r) { l*=r; } );
return lhs;
}

Expand All @@ -421,7 +440,8 @@ inline constexpr auto& operator /= (
boost::numeric::ublas::tensor_core<T>& lhs,
const boost::numeric::ublas::detail::tensor_expression<boost::numeric::ublas::tensor_core<T>,D> &expr
){
boost::numeric::ublas::detail::eval(lhs, expr(), [](auto& l, auto const& r) { l/=r; } );
using value_type = typename boost::numeric::ublas::tensor_core<T>::value_type;
boost::numeric::ublas::detail::eval(lhs, expr(), [](value_type& l, value_type const& r) { l/=r; } );
return lhs;
}

Expand All @@ -433,7 +453,8 @@ inline constexpr auto& operator += (
boost::numeric::ublas::tensor_core<TensorEngine>& lhs,
typename boost::numeric::ublas::tensor_core<TensorEngine>::value_type r
){
boost::numeric::ublas::detail::eval(lhs, [r](auto& l) { l+=r; } );
using value_type = typename boost::numeric::ublas::tensor_core<TensorEngine>::value_type;
boost::numeric::ublas::detail::eval(lhs, [r](value_type& l) { l+=r; } );
return lhs;
}

Expand All @@ -442,7 +463,8 @@ inline constexpr auto& operator -= (
boost::numeric::ublas::tensor_core<TensorEngine>& lhs,
typename boost::numeric::ublas::tensor_core<TensorEngine>::value_type r
){
boost::numeric::ublas::detail::eval(lhs, [r](auto& l) { l-=r; } );
using value_type = typename boost::numeric::ublas::tensor_core<TensorEngine>::value_type;
boost::numeric::ublas::detail::eval(lhs, [r](value_type& l) { l-=r; } );
return lhs;
}

Expand All @@ -451,7 +473,8 @@ inline constexpr auto& operator *= (
boost::numeric::ublas::tensor_core<TensorEngine>& lhs,
typename boost::numeric::ublas::tensor_core<TensorEngine>::value_type r
){
boost::numeric::ublas::detail::eval(lhs, [r](auto& l) { l*=r; } );
using value_type = typename boost::numeric::ublas::tensor_core<TensorEngine>::value_type;
boost::numeric::ublas::detail::eval(lhs, [r](value_type& l) { l*=r; } );
return lhs;
}

Expand All @@ -460,7 +483,8 @@ inline constexpr auto& operator /= (
boost::numeric::ublas::tensor_core<TensorEngine>& lhs,
typename boost::numeric::ublas::tensor_core<TensorEngine>::value_type r
){
boost::numeric::ublas::detail::eval(lhs, [r](auto& l) { l/=r; } );
using value_type = typename boost::numeric::ublas::tensor_core<TensorEngine>::value_type;
boost::numeric::ublas::detail::eval(lhs, [r](value_type& l) { l/=r; } );
return lhs;
}

Expand All @@ -476,8 +500,9 @@ template<typename E>
requires boost::numeric::ublas::detail::TensorExpression<E>
inline constexpr auto operator -(E&& e) {
using tensor_type = boost::numeric::ublas::detail::real_expression_type_t<E>;
using value_type = typename tensor_type::value_type;
return boost::numeric::ublas::detail::make_unary_tensor_expression<tensor_type> (
std::forward<E>(e), std::negate<>{}
std::forward<E>(e), std::negate<value_type>{}
);
}

Expand Down
Loading

0 comments on commit b7de038

Please sign in to comment.