Implementation detail of our paper "Attention Based Multi-Instance Thyroid Cytopathological Diagnosis with Multi-Scale Feature Fusion".
Please cite this paper in your publications if it helps your research:
@inproceedings{qiu2021attention,
title={Attention Based Multi-Instance Thyroid Cytopathological Diagnosis with Multi-Scale Feature Fusion},
author={Qiu, Shuhao and Guo, Yao and Zhu, Chuang and Zhou, Wenli and Chen, Huang},
booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
pages={3536--3541},
year={2021},
organization={IEEE}
}
- Python == 3.5
- Pytorch == 1.3.0
- torchvision == 0.4.1
run main.py
to start training and testing, the options are as follows:
--dataset
: dataset to train with [thyroid | breast]--backbone
: select backbone [resnet18 | resnet34]--method
: select method [B | BF | BFA]--mode
: select mode [train | test]--save_weight
: path to save checkpoint--load_weight
: path to load checkpoint--random_seed
: set random seed--gpu
: gpu index
To train with our method:
python main.py --dataset thyroid --backbone resent18 --method BFA --mode train
To test with our best model:
python main.py --dataset thyroid --backbone resent18 --method BFA --mode train --load_weight ./weight/best.pth
- email: [email protected]; [email protected]