Skip to content

πŸš€πŸŽ‰ A python visualization of the A* path finding algorithm. πŸ‘Œ It allows you to pick your start and end location and view the process of finding the shortest path. πŸš—πŸ›£

Notifications You must be signed in to change notification settings

cRYP70n-13/Path_finding_Visualizer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

26 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Path finding Visualizer

A* (pronounced "A-star") is a graph traversal and path search algorithm, which is often used in many fields of computer science due to its completeness, optimality, and optimal efficiency. One major practical drawback is its O(b^d) space complexity, as it stores all generated nodes in memory. Thus, in practical travel-routing systems, it is generally outperformed by algorithms which can pre-process the graph to attain better performance, as well as memory-bounded approaches; however, A* is still the best solution in many cases

Complexity

The time complexity of A* depends on the heuristic. In the worst case of an unbounded search space, the number of nodes expanded is exponential in the depth of the solution (the shortest path) d: O(b^d), where b is the branching factor (the average number of successors per state). This assumes that a goal state exists at all, and is reachable from the start state; if it is not, and the state space is infinite, the algorithm will not terminate.

The heuristic function has a major effect on the practical performance of A* search, since a good heuristic allows A* to prune away many of the bd nodes that an uninformed search would expand. Its quality can be expressed in terms of the effective branching factor b*, which can be determined empirically for a problem instance by measuring the number of nodes expanded, N, and the depth of the solution, then solving N + 1 = 1 + b* + (b*)^2 + ... + (b*)^d Good heuristics are those with low effective branching factor (the optimal being b* = 1).

The time complexity is polynomial when the search space is a tree, there is a single goal state, and the heuristic function h meets the following condition: |h(x) - h*(x)| = O(log h*(x)) where h* is the optimal heuristic, the exact cost to get from x to the goal. In other words, the error of h will not grow faster than the logarithm of the "perfect heuristic" h* that returns the true distance from x to the goal.

The space complexity of A* is roughly the same as that of all other graph search algorithms, as it keeps all generated nodes in memory. In practice, this turns out to be the biggest drawback of A* search, leading to the development of memory-bounded heuristic searches, such as Iterative deepening A*, memory bounded A*, and SMA*.

Pseudo Code

function reconstruct_path(cameFrom, current)
    total_path := {current}
    while current in cameFrom.Keys:
        current := cameFrom[current]
        total_path.prepend(current)
    return total_path

// A* finds a path from start to goal.
// h is the heuristic function. h(n) estimates the cost to reach goal from node n.
function A_Star(start, goal, h)
    // The set of discovered nodes that may need to be (re-)expanded.
    // Initially, only the start node is known.
    // This is usually implemented as a min-heap or priority queue rather than a hash-set.
    openSet := {start}

    // For node n, cameFrom[n] is the node immediately preceding it on the cheapest path from start
    // to n currently known.
    cameFrom := an empty map

    // For node n, gScore[n] is the cost of the cheapest path from start to n currently known.
    gScore := map with default value of Infinity
    gScore[start] := 0

    // For node n, fScore[n] := gScore[n] + h(n). fScore[n] represents our current best guess as to
    // how short a path from start to finish can be if it goes through n.
    fScore := map with default value of Infinity
    fScore[start] := h(start)

    while openSet is not empty
        // This operation can occur in O(1) time if openSet is a min-heap or a priority queue
        current := the node in openSet having the lowest fScore[] value
        if current = goal
            return reconstruct_path(cameFrom, current)

        openSet.Remove(current)
        for each neighbor of current
            // d(current,neighbor) is the weight of the edge from current to neighbor
            // tentative_gScore is the distance from start to the neighbor through current
            tentative_gScore := gScore[current] + d(current, neighbor)
            if tentative_gScore < gScore[neighbor]
                // This path to neighbor is better than any previous one. Record it!
                cameFrom[neighbor] := current
                gScore[neighbor] := tentative_gScore
                fScore[neighbor] := gScore[neighbor] + h(neighbor)
                if neighbor not in openSet
                    openSet.add(neighbor)

    // Open set is empty but goal was never reached
    return failure

Applications

A* is often used for the common pathfinding problem in applications such as video games, but was originally designed as a general graph traversal algorithm. It finds applications in diverse problems, including the problem of parsing using stochastic grammars in NLP. Other cases include an Informational search with online learning.

Explanation

Astart Example

Astar example

Astar progress animation

Astar progress animation

Requirments

Pygame

About

πŸš€πŸŽ‰ A python visualization of the A* path finding algorithm. πŸ‘Œ It allows you to pick your start and end location and view the process of finding the shortest path. πŸš—πŸ›£

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages