-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpicturae_csv_create.py
executable file
·996 lines (732 loc) · 42.6 KB
/
picturae_csv_create.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
"""picturae_csv_create: this file is for wrangling and creating the dataframe
and csv with the parsed fields required for upload, in picturae_import.
Uses TNRS (Taxonomic Name Resolution Service) in taxon_check/test_TNRS.R
to catch spelling mistakes, mis-transcribed taxa.
Source for taxon names at IPNI (International Plant Names Index): https://www.ipni.org/ """
import argparse
import csv
import os.path
from taxon_parse_utils import *
from gen_import_utils import *
from string_utils import *
from os import path
from sql_csv_utils import SqlCsvTools
from specify_db import SpecifyDb
import logging
from get_configs import get_config
from taxon_tools.BOT_TNRS import iterate_taxon_resolve
from image_client import ImageClient
starting_time_stamp = datetime.now()
pd.set_option('future.no_silent_downcasting', True)
class IncorrectTaxonError(Exception):
pass
class InvalidFilenameError(Exception):
pass
class CsvCreatePicturae:
def __init__(self, config, tnrs_ignore, covered_ignore, logging_level):
self.tnrs_ignore = str_to_bool(tnrs_ignore)
self.covered_ignore = str_to_bool(covered_ignore)
self.picturae_config = config
self.specify_db_connection = SpecifyDb(self.picturae_config)
self.image_client = ImageClient(config=self.picturae_config)
self.logger = logging.getLogger("CsvCreatePicturae")
self.logger.setLevel(logging_level)
self.init_all_vars()
self.run_all()
def get_first_digits_from_filepath(self, filepath, field_size=9):
basename = os.path.basename(filepath)
ints = re.findall(r'\d+', basename)
if len(ints) == 0:
raise InvalidFilenameError("Can't get barcode from filename")
int_digits = int(ints[0])
string_digits = f"{int_digits}"
string_digits = string_digits.zfill(field_size)
self.logger.debug(f"extracting digits from {filepath} to get {string_digits}")
return string_digits
def init_all_vars(self):
"""init_all_vars:to use for testing and decluttering init function,
initializes all class level variables """
self.cover_list = []
self.sheet_list = []
self.path_prefix = self.picturae_config.PREFIX
self.dir_path = self.picturae_config.DATA_FOLDER + "csv_batch"
# setting up alternate csv tools connections
self.sql_csv_tools = SqlCsvTools(config=self.picturae_config, logging_level=self.logger.getEffectiveLevel())
# intializing parameters for database upload
init_list = ['taxon_id', 'barcode',
'collector_number', 'collecting_event_guid',
'collecting_event_id',
'determination_guid', 'collection_ob_id', 'collection_ob_guid',
'name_id', 'family', 'gen_spec_id', 'family_id',
'records_dropped']
for param in init_list:
setattr(self, param, None)
def file_present(self):
"""file_present:
checks if correct filepaths in working directory,
checks if file is on input date
checks if file folder is present.
uses self.use_date to decide which folders to check
args:
none
"""
to_current_directory()
dir_sub = os.path.isdir(self.dir_path)
if dir_sub is True:
sheet_count = 0
cover_count = 0
for root, dirs, files in os.walk(self.dir_path):
for file in files:
file_string = file.lower()
if "sheet_cp1" in file_string:
sheet_count += 1
self.sheet_list.append(file)
elif "cover_cp1" in file_string:
cover_count += 1
self.cover_list.append(file)
else:
self.logger.info(f"csv {file} file does not fit format , skipping")
if sheet_count != cover_count:
raise ValueError(f"Count of Sheet CSVs and Cover CSVs do not match {sheet_count} != {cover_count}")
else:
self.logger.info("Sheet and Cover CSVs exist!")
else:
raise ValueError(f"picturae csv subdirectory not present")
def csv_read_path(self, csv_level: str):
"""Reads in CSV data for given level and date.
Args:
csv_level (str): "COVER" or "SHEET" indicating the level of data.
"""
dataframes = []
if csv_level == "COVER":
data_list = self.cover_list
elif csv_level == "SHEET":
data_list = self.sheet_list
else:
raise ValueError("Invalid csv_level value. It must be 'COVER' or 'SHEET'.")
for csv_path in data_list:
csv_path = self.dir_path + f"{os.path.sep}" + csv_path
df = read_csv_file(csv_path)
if " " in df.columns[0]:
df = standardize_headers(df)
dataframes.append(df)
combined_csv = pd.concat(dataframes, ignore_index=True)
if len(combined_csv) > 0:
return combined_csv
else:
raise ValueError("The resulting DataFrame is empty; no data was loaded.")
def csv_merge_and_clean(self):
"""csv_merge_and_clean:
reads, merges and data wrangles the set of folder and specimen csvs
"""
fold_csv, spec_csv = self.read_folder_and_specimen_csvs()
spec_csv = self.fill_duplicate_barcodes(spec_csv=spec_csv)
self.merge_folder_and_specimen_csvs(fold_csv, spec_csv)
self.remove_duplicate_barcodes()
def drop_common_columns(self, csv: pd.DataFrame, folder=False):
"""drops columns duplicate between sheet and cover csvs"""
drop_list = ['APPLICATION-ID', 'OBJECT-TYPE', 'APPLICATION-BATCH', 'FEEDBACK-ALEMBO', 'FEEDBACK-CALIFORNIA']
if folder is True:
drop_list = drop_list + ['SPECIMEN-BARCODE', 'PATH-JPG', 'CSV-BATCH']
csv.drop(columns=drop_list, inplace=True)
return csv
def read_folder_and_specimen_csvs(self):
"""read the folder and specimen CSVs into the environment.
args:
none
"""
fold_csv = self.csv_read_path(csv_level="COVER")
spec_csv = self.csv_read_path(csv_level="SHEET")
# Set the folder barcode column to match the specimen barcode
fold_csv['FOLDER-BARCODE'] = fold_csv['SPECIMEN-BARCODE']
self.drop_common_columns(fold_csv, folder=True)
self.drop_common_columns(spec_csv)
difference = set(fold_csv['FOLDER-BARCODE']) - set(spec_csv['FOLDER-BARCODE'])
if len(difference) > 0:
self.logger.warning(f"Following folder barcodes not in specimen csv {difference}")
return fold_csv, spec_csv
def fill_duplicate_barcodes(self, spec_csv):
"""Populate barcode and Parent barcode based on duplicate records in notes section.
args:
spec_csv: the specimen level dataframe
"""
spec_csv['SPECIMEN-BARCODE'] = spec_csv['SPECIMEN-BARCODE'].apply(remove_barcode_suffix)
is_duplicate = spec_csv['NOTES'].astype(str).str.contains(r'\d', regex=True)
spec_csv['DUPLICATE'] = is_duplicate
spec_csv['PARENT-BARCODE'] = ''
spec_csv.loc[is_duplicate, 'PARENT-BARCODE'] = spec_csv.loc[is_duplicate, 'SPECIMEN-BARCODE']
spec_csv.loc[is_duplicate, 'SPECIMEN-BARCODE'] = spec_csv.loc[
is_duplicate, 'NOTES'].apply(remove_non_numerics)
spec_csv = fill_missing_folder_barcodes(df=spec_csv, spec_bar="SPECIMEN-BARCODE",
fold_bar='FOLDER-BARCODE', parent_bar="PARENT-BARCODE")
spec_csv = self.update_duplicate_notes(spec_csv=spec_csv)
return spec_csv
def update_duplicate_notes(self, spec_csv):
"""Creates grouped list of barcodes that share the same parent barcode and applies to the notes section"""
# Group by parent barcode
grouped = spec_csv.groupby('PARENT-BARCODE')['SPECIMEN-BARCODE'].apply(list).reset_index()
grouped.columns = ['PARENT-BARCODE', 'SPECIMEN-BARCODES']
# Create a dictionary mapping parent barcodes to specimen barcodes
barcode_dict = dict(zip(grouped['PARENT-BARCODE'], grouped['SPECIMEN-BARCODES']))
# Apply the parse function to update the 'NOTES' column
spec_csv = self.parse_duplicate_notes(spec_csv=spec_csv, barcode_dict=barcode_dict)
return spec_csv
def parse_duplicate_notes(self, spec_csv, barcode_dict):
"""Parses a new aggregate duplicate note for barcodes that share the same parent barcode."""
self.logger.info(f"{barcode_dict}")
for parent_barcode, specimen_barcodes in barcode_dict.items():
if parent_barcode:
common_list = [parent_barcode] + barcode_dict[parent_barcode]
total_barcodes = len(common_list)
# Update NOTES for each specimen barcode
for barcode in common_list:
other_barcodes = [b for b in common_list if b != barcode]
joined_barcodes = f"[{', '.join(other_barcodes)}]"
note_message = f"Multi-mount of {total_barcodes} barcodes. See also {joined_barcodes}."
spec_csv.loc[spec_csv['SPECIMEN-BARCODE'] == barcode, 'NOTES'] = note_message
else:
pass
return spec_csv
def merge_folder_and_specimen_csvs(self, fold_csv, spec_csv):
"""define self.record_full, Merge the folder and specimen CSVs and fill missing values.
args:
fold_csv: the folder level csv
spec_csv: the specimen level csv
"""
self.record_full = pd.merge(fold_csv, spec_csv, on="FOLDER-BARCODE")
self.record_full.fillna(np.nan, inplace=True)
self.record_full.rename(columns={"NOTES_x": "cover_notes", "NOTES_y": "sheet_notes"}, inplace=True)
spec_difference = set(spec_csv['SPECIMEN-BARCODE']) - set(self.record_full['SPECIMEN-BARCODE'])
# checking for specimen barcodes not matched to folder barcode
if spec_difference:
spec_difference = list(spec_difference)
spec_difference.sort(key=lambda x: int(x) if x.isdigit() else float('inf'))
filtered_spec_csv = spec_csv[spec_csv['SPECIMEN-BARCODE'].isin(spec_difference)]
csv_batch_unmatch = filtered_spec_csv['CSV-BATCH'].unique()
raise ValueError(f"In the following batches {csv_batch_unmatch}, the"
f" following barcodes not matched to a folder {spec_difference}")
def remove_duplicate_barcodes(self):
"""Removing and saving rows with improperly marked duplicate records for further visual QC"""
merge_len = len(self.record_full)
# checking for improperly marked duplicates where specimen barcode is doubled instead of replaced
duplicates = self.record_full[self.record_full.duplicated(subset='SPECIMEN-BARCODE', keep=False)]
# where specimen barcode is duplicated, but collector-number is NOT duplicated.
unmarked_dupes = duplicates[
duplicates.duplicated(subset=['SPECIMEN-BARCODE', 'COLLECTOR-NUMBER'], keep=False) == False]
unmarked_all = self.record_full[
self.record_full['SPECIMEN-BARCODE'].isin(unmarked_dupes['SPECIMEN-BARCODE'])]
# checking for duplicate rows
self.record_full = self.record_full.drop(unmarked_dupes.index)
self.record_full = self.record_full.drop_duplicates()
# getting range of csv dates and writing unmarked duplicates to csv
batch_date_list = self.record_full['CSV-BATCH'].apply(extract_digits, args=(8,))
# re-assigning date_use to a range of dates
self.date_range = f"{batch_date_list.min()}_{batch_date_list.max()}"
if len(unmarked_all) > 0:
unmarked_all.to_csv(f'picturae_csv/csv_batch/PIC_upload/spec_dup_{self.date_range}.csv',
quoting=csv.QUOTE_NONNUMERIC, index=False)
unique_len = len(self.record_full)
if merge_len > unique_len:
self.logger.error(f"Detected {merge_len - unique_len} duplicate records")
def csv_colnames(self):
"""csv_colnames: function to be used to rename columns to DB standards.
args:
none"""
col_dict = {
'CSV-BATCH': 'CSV_batch',
'FOLDER-BARCODE': 'folder_barcode',
'SPECIMEN-BARCODE': 'CatalogNumber',
'PARENT-BARCODE': 'parent_CatalogNumber',
'PATH-JPG': 'image_path',
'LABEL-IS-MOSTLY-HANDWRITTEN': 'mostly_handwritten',
'TAXON-ID': 'taxon_id',
'FAMILY': 'Family',
'GENUS': 'Genus',
'SPECIES': 'Species',
'QUALIFIER': 'qualifier',
'RANK-1': 'Rank 1',
'EPITHET-1': 'Epithet 1',
'RANK-2': 'Rank 2',
'EPITHET-2': 'Epithet 2',
'cover_notes': 'cover_notes',
'HYBRID': 'Hybrid',
'AUTHOR': 'Author',
'COLLECTOR-NUMBER': 'collector_number',
'COLLECTOR-ID-1': 'agent_id1',
'COLLECTOR-FIRST-NAME-1': 'collector_first_name1',
'COLLECTOR-MIDDLE-NAME-1': 'collector_middle_name1',
'COLLECTOR-LAST-NAME-1': 'collector_last_name1',
'COLLECTOR-ID-2': 'agent_id2',
'COLLECTOR-FIRST-NAME-2': 'collector_first_name2',
'COLLECTOR-MIDDLE-NAME-2': 'collector_middle_name2',
'COLLECTOR-LAST-NAME-2': 'collector_last_name2',
'COLLECTOR-ID-3': 'agent_id3',
'COLLECTOR-FIRST-NAME-3': 'collector_first_name3',
'COLLECTOR-MIDDLE-NAME-3': 'collector_middle_name3',
'COLLECTOR-LAST-NAME-3': 'collector_last_name3',
'COLLECTOR-ID-4': 'agent_id4',
'COLLECTOR-FIRST-NAME-4': 'collector_first_name4',
'COLLECTOR-MIDDLE-NAME-4': 'collector_middle_name4',
'COLLECTOR-LAST-NAME-4': 'collector_last_name4',
'COLLECTOR-ID-5': 'agent_id5',
'COLLECTOR-FIRST-NAME-5': 'collector_first_name5',
'COLLECTOR-MIDDLE-NAME-5': 'collector_middle_name5',
'COLLECTOR-LAST-NAME-5': 'collector_last_name5',
'LOCALITY-ID': 'locality_id',
'COUNTRY': 'Country',
'STATE-LOCALITY': 'State',
'COUNTY': 'County',
'PRECISE-LOCALITY': 'locality',
'VERBATIM-DATE': 'verbatim_date',
'START-DATE-MONTH': 'start_date_month',
'START-DATE-DAY': 'start_date_day',
'START-DATE-YEAR': 'start_date_year',
'END-DATE-MONTH': 'end_date_month',
'END-DATE-DAY': 'end_date_day',
'END-DATE-YEAR': 'end_date_year',
'sheet_notes': 'sheet_notes',
'DUPLICATE': 'duplicate'
}
col_order_list = []
for key, value in col_dict.items():
col_order_list.append(key)
self.record_full = self.record_full.reindex(columns=col_order_list)
# comment out before committing, code to create simple manifests
# self.record_full['PATH-JPG'] = self.record_full['PATH-JPG'].apply(os.path.basename)
#
self.record_full.rename(columns=col_dict, inplace=True)
# self.record_full.to_csv(f'picturae_csv/csv_batch/PIC_upload/master_db.csv',
# quoting=csv.QUOTE_NONNUMERIC, index=False)
#
# self.logger.info("merged csv written")
def missing_data_masks(self):
"""missing_data_masks: create masks and filtered csvs for each kind of relevant missing data to flag.
returns:
four filtered csvs --> missing_rank_csv, missing_geography_csv, missing_label_csv, invalid_date_csv
"""
# flags in missing rank columns when > 1 infra-specific rank.
rank1_missing = (self.record_full['Rank 1'].isna() | (self.record_full['Rank 1'] == '')) & \
(self.record_full['Epithet 1'].notna() & (self.record_full['Epithet 1'] != ''))
rank2_missing = (self.record_full['Rank 2'].isna() | (self.record_full['Rank 2'] == '')) & \
(self.record_full['Epithet 2'].notna() & (self.record_full['Epithet 2'] != ''))
missing_rank_csv = self.record_full.loc[rank1_missing & rank2_missing]
# flags missing family in column
missing_family = (self.record_full['Family'].isna() | (self.record_full['Family'] == '') |
(self.record_full['Family'].isnull()))
missing_family_csv = self.record_full.loc[missing_family]
# flags if missing higher geography
missing_geography = (self.record_full['Country'].isna() | (self.record_full['Country'] == '') |
(self.record_full['Country'].isnull()))
missing_geography_csv = self.record_full.loc[missing_geography]
# flags if label is covered or folded.
missing_label = ["covered" in str(row).lower() or "folded" in str(row).lower()
for row in self.record_full['sheet_notes']]
missing_label_csv = self.record_full.loc[missing_label]
# flags incorrect start date and end date
invalid_start_date = ~self.record_full['start_date'].apply(validate_date)
invalid_end_date = ~self.record_full['end_date'].apply(validate_date)
invalid_date_mask = invalid_start_date | invalid_end_date
invalid_date_csv = self.record_full.loc[invalid_date_mask]
# flags verbatim date too long greater than 50 char and stores them in new label_data column
invalid_verbatim_mask = self.record_full["verbatim_date"].str.len() > 50
self.record_full['label_data'] = ""
self.record_full.loc[invalid_verbatim_mask, 'label_data'] = self.record_full.loc[
invalid_verbatim_mask, 'verbatim_date']
invalid_verbatim_csv = self.record_full.loc[invalid_verbatim_mask]
return (missing_rank_csv, missing_family_csv, missing_geography_csv, missing_label_csv, invalid_date_csv,
invalid_verbatim_csv)
def flag_missing_data(self):
missing_rank_csv, missing_family_csv, missing_geography_csv, \
missing_label_csv, invalid_date_csv, invalid_verbatim_csv = self.missing_data_masks()
data_flag_dict = {"missing_rank": missing_rank_csv, "missing_family": missing_family_csv,
"missing_geography": missing_geography_csv, "missing_label": missing_label_csv,
"invalid_date": invalid_date_csv, "invalid_verbatim": invalid_verbatim_csv}
message_dict = {
"missing_rank": "Taxonomic names with 2 missing ranks at covers:",
"missing_family": "Rows missing taxonomic family at barcodes:",
"missing_geography": "Rows missing higher geography at barcodes:",
"missing_label": "Label covered or folded at barcodes:",
"invalid_date": "Invalid dates at:",
"invalid_verbatim": "Verbatim date too long at:",
}
# flag missing and incorrect data
message = ""
for key, csv_data in data_flag_dict.items():
if key == "missing_label" and self.covered_ignore:
continue
if len(csv_data) > 0:
csv_data = csv_data.sort_values(by=['CSV_batch', 'CatalogNumber'])
if key in ["missing_rank", "missing_family"]:
item_set = set(csv_data['folder_barcode'])
batch_set = set(csv_data['CSV_batch'])
else:
item_set = set(csv_data['CatalogNumber'])
batch_set = set(csv_data['CSV_batch'])
message += message_dict[key]
message += f" {item_set} in batches {batch_set}\n\n"
if message:
raise ValueError(message.strip())
def taxon_concat(self, row):
"""taxon_concat:
parses taxon columns to check taxon database, adds the Genus species, ranks, and Epithets,
in the correct order, to create new taxon fullname in self.fullname. so that can be used for
database checks.
args:
row: a row from a csv file containing taxon information with correct column names
"""
hyb_index = self.record_full.columns.get_loc('Hybrid')
is_hybrid = row.iloc[hyb_index]
# defining empty strings for parsed taxon substrings
full_name = ""
tax_name = ""
first_intra = ""
gen_spec = ""
hybrid_base = ""
gen_index = self.record_full.columns.get_loc('Genus')
genus = row.iloc[gen_index]
column_sets = [
['Genus', 'Species', 'Rank 1', 'Epithet 1', 'Rank 2', 'Epithet 2'],
['Genus', 'Species', 'Rank 1', 'Epithet 1'],
['Genus', 'Species']
]
for columns in column_sets:
for column in columns:
index = self.record_full.columns.get_loc(column)
if pd.notna(row.iloc[index]) and row.iloc[index] != '':
if columns == column_sets[0]:
full_name += f" {row.iloc[index]}"
elif columns == column_sets[1]:
first_intra += f" {row.iloc[index]}"
elif columns == column_sets[2]:
gen_spec += f" {row.iloc[index]}"
full_name = full_name.strip()
first_intra = first_intra.strip()
gen_spec = gen_spec.strip()
# creating taxon name
# creating temporary string in order to parse taxon names without qualifiers
separate_string = remove_qualifiers(full_name)
taxon_strings = separate_string.split()
second_epithet_in = row.iloc[self.record_full.columns.get_loc('Epithet 2')]
first_epithet_in = row.iloc[self.record_full.columns.get_loc('Epithet 1')]
spec_in = row.iloc[self.record_full.columns.get_loc('Species')]
genus_in = row.iloc[self.record_full.columns.get_loc('Genus')]
# changing name variable based on condition
if pd.notna(second_epithet_in) and second_epithet_in != '':
tax_name = remove_qualifiers(second_epithet_in)
elif pd.notna(first_epithet_in) and first_epithet_in != '':
tax_name = remove_qualifiers(first_epithet_in)
elif pd.notna(spec_in) and spec_in != '':
tax_name = remove_qualifiers(spec_in)
elif pd.notna(genus_in) and genus_in != '':
tax_name = remove_qualifiers(genus_in)
else:
return ValueError('missing taxon in row')
if is_hybrid is True:
if first_intra == full_name:
if "var." in full_name or "subsp." in full_name or " f." in full_name or "subf." in full_name:
hybrid_base = full_name
full_name = " ".join(taxon_strings[:2])
elif full_name != genus and full_name == gen_spec:
hybrid_base = full_name
full_name = taxon_strings[0]
elif full_name == genus:
hybrid_base = full_name
full_name = full_name
else:
self.logger.error('hybrid base not found')
elif len(first_intra) != len(full_name):
if "var." in full_name or "subsp." in full_name or " f." in full_name or "subf." in full_name:
hybrid_base = full_name
full_name = " ".join(taxon_strings[:4])
else:
pass
return str(gen_spec), str(full_name), str(first_intra), str(tax_name), str(hybrid_base)
def col_clean(self):
"""parses and cleans dataframe columns until ready for upload.
runs dependent function taxon concat
"""
# concatenate date
for col_name in list(["start", "end"]):
self.record_full[f'{col_name}_date'] = self.record_full.apply(
lambda row: format_date_columns(row[f'{col_name}_date_year'],
row[f'{col_name}_date_month'], row[f'{col_name}_date_day']), axis=1)
for colname in ['verbatim_date', 'locality', 'collector_number']:
self.record_full[colname] = self.record_full[colname].apply(
lambda x: replace_apostrophes(x).strip() if isinstance(x, str) else x
)
# flagging missing data
self.flag_missing_data()
# converting hybrid column to true boolean
self.record_full['Hybrid'] = self.record_full['Hybrid'].apply(str_to_bool)
# concatenating year, month, day columns into start/end date columns
# Replace '.jpg' or '.jpeg' (case insensitive) with '.tif'
self.record_full['image_path'] = self.record_full['image_path'].str.replace(r"\.jpe?g", ".tif",
case=False, regex=True)
# truncating image_path column and concatenating with batch path
self.record_full['CSV_batch'] = self.record_full['CSV_batch'].apply(
lambda csv_batch: remove_before(csv_batch, "CP1"))
self.record_full['image_path'] = self.record_full['image_path'].apply(
lambda path_img: path.basename(path_img))
self.record_full['image_path'] = self.record_full['CSV_batch'] + f"{os.path.sep}undatabased" + \
f"{os.path.sep}" + self.record_full['image_path']
# removing leading and trailing space from taxa
tax_cols = ['Genus', 'Species', 'Rank 1', 'Epithet 1', 'Rank 2', 'Epithet 2']
self.record_full[tax_cols] = self.record_full[tax_cols].map(
lambda x: x.strip() if isinstance(x, str) else x)
# filling in missing subtaxa ranks for first infraspecific rank
self.record_full['missing_rank'] = (pd.isna(self.record_full[f'Rank 1']) & pd.notna(
self.record_full[f'Epithet 1'])) | \
((self.record_full[f'Rank 1'] == '') & (self.record_full[f'Epithet 1'] != ''))
self.record_full['missing_rank'] = self.record_full['missing_rank'].astype(bool)
placeholder_rank = (pd.isna(self.record_full['Rank 1']) | (self.record_full['Rank 1'] == '')) & \
(self.record_full['missing_rank'] == True)
# Set 'Rank 1' to 'subsp.' where the condition is True
self.record_full.loc[placeholder_rank, 'Rank 1'] = 'subsp.'
# parsing taxon columns
self.record_full[['gen_spec', 'fullname',
'first_intra',
'taxname', 'hybrid_base']] = self.record_full.apply(self.taxon_concat,
axis=1, result_type='expand')
# setting datatypes for columns
string_list = self.record_full.columns.to_list()
self.record_full[string_list] = self.record_full[string_list].astype(str)
self.record_full = self.record_full.replace(['', None, 'nan', np.nan], '')
self.record_full = fill_empty_col(self.record_full, string_fill="[unspecified]", col_name="locality")
self.record_full = fill_empty_col(self.record_full, string_fill="[No date on label]", col_name="verbatim_date")
def barcode_has_record(self):
"""check if barcode / catalog number already in collectionobject table"""
self.record_full['CatalogNumber'] = self.record_full['CatalogNumber'].apply(remove_non_numerics)
self.record_full['CatalogNumber'] = self.record_full['CatalogNumber'].astype(str)
self.record_full['barcode_present'] = ''
for index, row in self.record_full.iterrows():
barcode = row['CatalogNumber']
barcode = barcode.zfill(9)
sql = f'''select CatalogNumber from collectionobject
where CatalogNumber = {barcode};'''
self.logger.info(f"running query: {sql}")
db_barcode = self.specify_db_connection.get_one_record(sql)
if db_barcode is None:
self.record_full.loc[index, 'barcode_present'] = False
else:
self.record_full.loc[index, 'barcode_present'] = True
def image_has_record(self):
"""checks if image name/barcode already in image_db"""
self.record_full['image_present_db'] = None
# Extract file names once and convert to lowercase.
self.record_full['file_name'] = self.record_full['image_path'].apply(lambda x: os.path.basename(x).lower())
self.record_full['image_present_db'] = self.record_full['file_name'].apply(
lambda filename: self.image_client.check_image_db_if_filename_imported(
collection="Botany", filename=filename, exact=True
)
)
def check_barcode_match(self):
"""checks if filepath barcode matches catalog number barcode
just in case merge between folder and specimen level data was not clean"""
self.record_full['file_path_digits'] = self.record_full['image_path'].apply(
lambda path: self.get_first_digits_from_filepath(path, field_size=9)
)
self.record_full['is_barcode_match'] = self.record_full.apply(lambda row: (row['file_path_digits'] ==
row['CatalogNumber'].zfill(9)) or
str_to_bool(row['duplicate']) is True,
axis=1)
self.record_full = self.record_full.drop(columns='file_path_digits')
def check_if_images_present(self):
"""checks that each image exists, creating boolean column for later use"""
self.record_full['image_valid'] = self.record_full.apply(
lambda row: os.path.exists(f"{self.path_prefix}{row['image_path']}")
or str_to_bool(row['duplicate']) is True,
axis=1)
def taxon_process_row(self, row):
"""applies taxon_get to a row of the picturae python dataframe"""
taxon_id = self.sql_csv_tools.taxon_get(
name=row['fulltaxon'],
hybrid=str_to_bool(row['Hybrid']),
taxname=row['taxname']
)
return taxon_id
def check_taxa_against_database(self):
"""check_taxa_against_database:
concatenates every taxonomic column together to get the full taxonomic name,
checks full taxonomic name against database and retrieves taxon_id if present
and `None` if absent from db. In TNRS, only taxonomic names with a `None`
result will be checked.
args:
None
"""
col_list = ['Genus', 'Species', 'Rank 1', 'Epithet 1', 'Rank 2', 'Epithet 2']
self.record_full['fulltaxon'] = ''
# concatenating together taxonomic columns to create fulltaxon
self.record_full['fulltaxon'] = self.record_full[col_list].fillna('').apply(lambda x: ' '.join(x[x != '']),
axis=1)
self.record_full['fulltaxon'] = self.record_full['fulltaxon'].str.strip()
# Assign "Family" value if "fulltaxon" is empty or contains "missing taxon"
self.record_full['fulltaxon'] = self.record_full.apply(
lambda row: row['Family'] if not row['fulltaxon'] or "missing taxon" in row['fulltaxon']
else row['fulltaxon'], axis=1)
# Query once per unique entry for efficiency
unique_fulltaxons = self.record_full[['fulltaxon', 'Hybrid', 'taxname']].drop_duplicates()
taxon_id_map = unique_fulltaxons.apply(lambda row: self.taxon_process_row(row), axis=1)
taxon_id_map.index = unique_fulltaxons['fulltaxon']
taxon_id_map = taxon_id_map.to_dict()
# Mapping the results back to the original DataFrame
self.record_full['taxon_id'] = self.record_full['fulltaxon'].map(taxon_id_map)
self.record_full['taxon_id'] = self.record_full['taxon_id'].astype(pd.Int64Dtype())
self.record_full.drop(columns=["fulltaxon"], inplace=True)
def taxon_check_tnrs(self):
"""taxon_check_real:
Sends the concatenated taxon column, through TNRS, to match names,
with and without spelling mistakes, only checks base name
for hybrids as IPNI does not work well with hybrids
"""
bar_tax = self.record_full[pd.isna(self.record_full['taxon_id']) | (self.record_full['taxon_id'] == '')]
if len(bar_tax) <= 0:
self.record_full['overall_score'] = 1
self.record_full['name_matched'] = ''
self.record_full['matched_name_author'] = ''
elif len(bar_tax) >= 1:
bar_tax = bar_tax[['CatalogNumber', 'fullname']]
resolved_taxon = iterate_taxon_resolve(bar_tax)
resolved_taxon.fillna({'overall_score': 0}, inplace=True)
resolved_taxon = resolved_taxon.drop(columns=["fullname", "unmatched_terms"])
# merging columns on Catalog Number
if len(resolved_taxon) > 0:
self.record_full = pd.merge(self.record_full, resolved_taxon, on="CatalogNumber", how="left")
else:
raise ValueError("resolved TNRS data not returned")
self.cleanup_tnrs()
else:
self.logger.error("bar tax length non-numeric")
def cleanup_tnrs(self):
"""cleanup_tnrs: operations to re-consolidate rows with hybrids parsed for tnrs,
and rows with missing rank parsed for tnrs.
Separates qualifiers into new column as well.
note: Threshold of .99 is set so that it will flag any taxon that differs from its match in any way,
which is why a second taxon-concat is not run.
"""
# re-consolidating hybrid column to fullname and removing hybrid_base column
self.record_full['hybrid_base'] = self.record_full['hybrid_base'].astype(str).str.strip()
hybrid_mask = (self.record_full['hybrid_base'].notna()) & (self.record_full['hybrid_base'] != '')
self.record_full.loc[hybrid_mask, 'fullname'] = self.record_full.loc[hybrid_mask, 'hybrid_base']
self.record_full = self.record_full.drop(columns=['hybrid_base'])
# consolidating taxonomy with replaced rank
self.record_full['missing_rank'] = self.record_full['missing_rank'].replace({'True': True,
'False': False}).astype(bool)
# mask for successful match
good_match = (pd.notna(self.record_full['name_matched']) & self.record_full['name_matched'] != '') & \
(self.record_full['overall_score'] >= .99)
# creating mask for missing ranks
rank_mask = (self.record_full['missing_rank'] == True) & \
(self.record_full['fullname'] != self.record_full['name_matched']) & good_match
# replacing good matches with their matched names
self.record_full.loc[rank_mask, 'fullname'] = self.record_full.loc[rank_mask, 'name_matched']
# replacing rank for missing rank cases in first intra and full taxon
for col in ['fullname', 'first_intra']:
self.record_full.loc[rank_mask, col] = \
self.record_full.loc[rank_mask, col].str.replace(" subsp. ", " var. ",
regex=False)
for col in ['fullname', 'gen_spec', 'first_intra', 'taxname']:
self.record_full[col] = self.record_full[col].apply(remove_qualifiers)
# pulling new tax IDs for corrected missing ranks
self.record_full.loc[rank_mask, 'taxon_id'] = self.record_full.loc[rank_mask, 'fullname'].apply(
self.sql_csv_tools.taxon_get)
if self.tnrs_ignore is False:
self.flag_tnrs_rows()
def flag_tnrs_rows(self):
"""function to flag TNRS rows that do not pass the .99 match threshold"""
taxon_to_correct = self.record_full[(self.record_full['overall_score'] < 0.99) &
(pd.notna(self.record_full['overall_score'])) &
(self.record_full['overall_score'] != 0)]
try:
taxon_correct_table = taxon_to_correct[['CSV_batch', 'fullname',
'name_matched', 'overall_score']].drop_duplicates()
assert len(taxon_correct_table) <= 0
except:
raise IncorrectTaxonError(f'TNRS has rejected taxonomic names at '
f'the following batches: {taxon_correct_table}')
def read_and_merge_image_manifest(self):
"""to keep taxonomic family consistent with herbarium cabinet order,
merges the family number from the picturae imaging manifests.
Herbarium cabinet family number supersedes 'correct' family assignment.
"""
batch_list = list(set(self.record_full['CSV_batch']))
headers = ["type", "folder_barcode", "CatalogNumber", "Family", "Barcode", "Timestamp", "Path"]
full_manifest = pd.DataFrame(columns=headers)
# reads and concatenates each imaging manifest from the path
for batch in batch_list:
path_to_csv = f"{self.path_prefix}{batch}{path.sep}{batch}.csv"
batch_manifest = pd.read_csv(path_to_csv, names=headers)
full_manifest = pd.concat([full_manifest, batch_manifest], ignore_index=True)
full_manifest = full_manifest.loc[full_manifest['type'].str.lower() == 'folder'.lower()]
# keeping only family and cover barcode to merge
full_manifest.drop(columns=["type", "CatalogNumber", "Barcode", "Timestamp", "Path"], inplace=True)
self.record_full = pd.merge(self.record_full, full_manifest, on="folder_barcode", how="left")
# adding boolean column for rows where manifest family number differs from accepted family
self.record_full['family_diff'] = self.record_full['Family_x'] != self.record_full['Family_y']
self.record_full['Family_x'] = self.record_full['Family_y']
self.record_full.drop(columns="Family_y", inplace=True)
self.record_full.rename(columns={"Family_x": "Family"}, inplace=True)
def write_upload_csv(self):
"""write_upload_csv: writes a copy of csv to PIC upload
allows for manual review before uploading.
"""
self.read_and_merge_image_manifest()
self.record_full.drop(columns=['mostly_handwritten', 'folder_barcode', 'start_date_month',
'start_date_day', 'start_date_year', 'end_date_month',
'end_date_day', 'end_date_year'], inplace=True)
file_path = f"picturae_csv{path.sep}csv_batch{path.sep}PIC_upload{path.sep}PIC_record_{self.date_range}.csv"
#adding in blank label data field distinct from notes section
# quoting non-numerics/non-bools to prevent punctuation from splitting columns
cols_to_quote = self.record_full.select_dtypes(include=['object']).columns
self.record_full[cols_to_quote] = self.record_full[cols_to_quote].astype(str)
# replacing nas and literal string NA
self.record_full = self.record_full.fillna(pd.NA).replace({"<NA>": pd.NA, "nan": pd.NA})
self.record_full.to_csv(file_path, index=False, encoding='utf-8', quoting=csv.QUOTE_NONNUMERIC)
self.logger.info(f'DataFrame has been saved to csv as: {file_path}')
def run_all(self):
"""run_all: runs all methods in the class in order"""
# setting directory
to_current_directory()
# verifying file presence
self.file_present()
# merging and cleaning csv files
self.csv_merge_and_clean()
# renaming columns
self.csv_colnames()
# cleaning data
self.col_clean()
# check taxa against db
self.check_taxa_against_database()
# running taxa through TNRS
self.taxon_check_tnrs()
# checking if barcode record present in database
self.barcode_has_record()
# checking if barcode has valid image file
self.check_if_images_present()
# checking if image has record
self.image_has_record()
# checking if barcode has valid file name for barcode
self.check_barcode_match()
# writing csv for inspection and upload
self.write_upload_csv()
#
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Runs checks on Picturae csvs and returns "
"wrangled csv ready for upload")
parser.add_argument('-v', '--verbosity',
help='verbosity level. repeat flag for more detail',
default=0,
dest='verbose',
action='count')
parser.add_argument("-t", "--tnrs_ignore", nargs="?", required=True, help="True or False, choice to "
"ignore TNRS' matched name "
"for taxa that score < .99")
parser.add_argument("-ci", "--covered_ignore", nargs="?",
required=False, help="True or False choice to ignore warnings for covered/folded specimens",
default=False)
parser.add_argument("-l", "--log_level", nargs="?",
default="INFO", choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: %(default)s)")
args = parser.parse_args()
pic_config = get_config("Botany_PIC")
picturae_csv_instance = CsvCreatePicturae(config=pic_config, logging_level=args.log_level,
tnrs_ignore=args.tnrs_ignore, covered_ignore=args.covered_ignore)