-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
24d67b8
commit 3fd9794
Showing
1 changed file
with
98 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
# Requires installation of custom fork | ||
# devtools::install_github("Michael-Geuenich/singleCellNet") | ||
suppressPackageStartupMessages({ | ||
library(tibble) | ||
library(dplyr) | ||
devtools::load_all("../software/singleCellNet/") | ||
library(SingleCellExperiment) | ||
}) | ||
|
||
# read in data and extract required formats | ||
sce <- readRDS(snakemake@input$sce_train) | ||
|
||
train_labels <- read_tsv(snakemake@input[['annotation']]) %>% | ||
as.data.frame() %>% | ||
column_to_rownames('cell_id') | ||
|
||
sce$cell_type <- train_labels[colnames(sce), 'cell_type'] | ||
sce <- sce[,!is.na(sce$cell_type)] | ||
sce <- sce[,colnames(sce) %in% rownames(train_labels)] | ||
|
||
test <- readRDS(snakemake@input$test_sce) | ||
|
||
# Extract data to singleCellNet format | ||
SCN <- extractSCE(sce) | ||
stTM <- SCN$sampTab |> | ||
rownames_to_column("cell_id") | ||
expTMraw <- SCN$expDat | ||
|
||
SCN_test <- extractSCE(test) | ||
stTM_test <- SCN_test$sampTab |> | ||
rownames_to_column("cell_id") | ||
expTMraw_test <- SCN_test$expDat | ||
|
||
# Train classifier | ||
class_info <- scn_train( | ||
stTrain = stTM, | ||
expTrain = expTMraw, | ||
nTopGenes = 10, | ||
nRand = 70, | ||
nTrees = 1000, | ||
nTopGenePairs = 25, | ||
dLevel = "cell_type", | ||
colName_samp = "cell_id" | ||
) | ||
|
||
# Predict across test set | ||
classRes_val_all <- scn_predict(class_info[['cnProc']], expTMraw_test, nrand = 50) | ||
|
||
# Extract predictions | ||
classRes_val_all <- classRes_val_all |> | ||
t() |> as.data.frame() |> | ||
select(-rand) | ||
|
||
# Find top predictions | ||
cell_type_idx <- apply(classRes_val_all, 1, which.max) | ||
names(cell_type_idx) <- NULL | ||
|
||
cell_type_predictions <- lapply(cell_type_idx, function(x) colnames(classRes_val_all)[x]) |> | ||
unlist() | ||
classRes_val_all$cell_type <- cell_type_predictions | ||
|
||
|
||
classRes_val_all |> | ||
select(cell_type) | ||
|
||
result <- tibble(cell_id = rownames(classRes_val_all), | ||
predicted_cell_type = classRes_val_all$cell_type, | ||
prediction_params = paste0("SCN-labels-knn-", snakemake@wildcards[['neighbors']], | ||
"-res-", snakemake@wildcards[['res']], | ||
"-cell_numbers-", snakemake@wildcards[['cell_num']], | ||
'-randomSelection-', snakemake@wildcards[['rand']], | ||
'-corrupted-', snakemake@wildcards[['corrupt']], | ||
'-Init-', snakemake@wildcards[['initial']], | ||
'-seed-', snakemake@wildcards[['s']]), | ||
selection_procedure = paste0(snakemake@wildcards[['selection_procedure']], | ||
'-strategy-', snakemake@wildcards[['strat']], | ||
'-ALAlg-', snakemake@wildcards[['AL_alg']]), | ||
training_annotator = snakemake@wildcards[['annotator']], | ||
modality = snakemake@wildcards[['modality']]) | ||
|
||
# Needed for predictive labeling | ||
if(is.null(snakemake@wildcards[['cell_selection']])){ | ||
result$cell_selection <- NA | ||
}else{ | ||
result$cell_selection <- snakemake@wildcards[['cell_selection']] | ||
} | ||
|
||
if(!is.null(snakemake@wildcards[['similarity']])){ | ||
result$similarity <- paste0(snakemake@wildcards[['bal']], '-', snakemake@wildcards[['similarity']]) | ||
} | ||
|
||
if(!is.null(snakemake@wildcards$cell_selection)){ | ||
result$pred_cells <- snakemake@wildcards$cell_selection | ||
} | ||
|
||
write_tsv(result, snakemake@output[['predictions']]) | ||
|
||
|