Skip to content
This repository was archived by the owner on Feb 12, 2025. It is now read-only.

Added a commit to the function in the test-development.py branch #5

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 38 additions & 0 deletions .github/workflows/main.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
name: CI

# We can specify which Github events will trigger a CI build
on: push

# now define a single job 'build' (but could define more)
jobs:

build:

strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-latest]
python-version: ["3.10", "3.11"]

runs-on: ${{ matrix.os }}

# a job is a seq of steps
steps:

# Next we need to checkout out repository, and set up Python
# A 'name' is just an optional label shown in the log - helpful to clarify progress - and can be anything
- name: Checkout repository
uses: actions/checkout@v4

- name: Set up Python 3.11
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}

- name: Install Python dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt

- name: Test with PyTest
run: |
python -m pytest --cov=lcanalyzer.models tests/test_models.py
28 changes: 28 additions & 0 deletions lcanalyzer/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,3 +42,31 @@ def min_mag(data,mag_col):
:returns: The min value of the column.
"""
return data[mag_col].min()

def calc_stats(lc, bands, mag_col):
"""Calculate max, mean and min values for all bands of a lightcurve.
:param lc: pd.DataFrame with observed magnitudes for a single source.
:param bands: a list of all magnitude bands.
:param mag_col: a string with the name of the column for calculating the min value.
:returns: The max, mean, and min values of the column for all bands.
"""
stats = {}
for b in bands:
stat = {}
stat["max"] = max_mag(lc[b], mag_col)
stat["mean"] = mean_mag(lc[b], mag_col)
stat["min"] = min_mag(lc[b], mag_col)
stats[b] = stat
return pd.DataFrame.from_records(stats)

def normalize_lc(df,mag_col):
""" Normalize a single lightcurve.
:param df: pd.DataFrame with observed magnitudes for a single source.
:param mag_col: a string with the name of the column for normalizing.
:returns: Normalized lightcurve.
"""
min = min_mag(df,mag_col)
max = max_mag((df-min),mag_col)
lc = (df[mag_col]-min)/max
lc = lc.fillna(0)
return lc
27 changes: 27 additions & 0 deletions light-curve-analysis.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,33 @@
"plot_filter_symbols = {\"u\": \"o\", \"g\": \"^\", \"r\": \"v\", \"i\": \"s\", \"z\": \"*\", \"y\": \"p\"}"
]
},
{
"cell_type": "markdown",
"id": "9f6b7870-2b08-491b-a95a-02b3d7091bc2",
"metadata": {},
"source": [
"## Functions"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0140e69c-4a9b-45ee-a1a5-9d48d9ab3bc6",
"metadata": {},
"outputs": [],
"source": [
"def calc_stats(lc, bands, mag_col):\n",
" # Calculate max, mean and min values for all bands of a light curve\n",
" stats = {}\n",
" for b in bands:\n",
" stat = {}\n",
" stat[\"max\"] = models.max_mag(lc[b], mag_col)\n",
" stat[\"mean\"] = models.max_mag(lc[b], mag_col)\n",
" stat[\"min\"] = models.mean_mag(lc[b], mag_col)\n",
" stats[b] = stat\n",
" return pd.DataFrame.from_records(stats)"
]
},
{
"cell_type": "markdown",
"id": "01f08b64-6d72-402b-b586-8bd0b148bd6d",
Expand Down
102 changes: 68 additions & 34 deletions test-development.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
"outputs": [],
"source": [
"import pandas as pd\n",
"import pandas.testing as pdt\n",
"import lcanalyzer.models as models"
]
},
Expand Down Expand Up @@ -49,19 +50,36 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 11,
"id": "4db3c851-f2bf-4a30-932a-b5267728e82d",
"metadata": {},
"outputs": [],
"source": [
"### Get maximum values for all bands\n",
"def calc_stat(lc, bands, mag_col):\n",
" # Define an empty dictionary where we will store the results\n",
" stat = {}\n",
" # For each band get the maximum value and store it in the dictionary\n",
"def calc_stats(lc, bands, mag_col):\n",
" # Calculate max, mean and min values for all bands of a light curve\n",
" stats = {}\n",
" for b in bands:\n",
" stat[b + \"_max\"] = models.max_mag(lc[b], mag_col)\n",
" return stat"
" stat = {}\n",
" stat[\"max\"] = models.max_mag(lc[b], mag_col)\n",
" stat[\"mean\"] = models.mean_mag(lc[b], mag_col)\n",
" stat[\"min\"] = models.min_mag(lc[b], mag_col)\n",
" stats[b] = stat\n",
" return pd.DataFrame.from_records(stats)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "fdea13d3-cb23-4357-a878-c7767232b444",
"metadata": {},
"outputs": [],
"source": [
"def normalize_lc(df,mag_col):\n",
" # Normalize a single light curve\n",
" min = min_mag(df,mag_col)\n",
" max = max_mag((df-min),mag_col)\n",
" lc = (df[mag_col]-min)/max\n",
" return lc"
]
},
{
Expand Down Expand Up @@ -343,21 +361,46 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 12,
"id": "104e0600-286f-4c77-ad41-2e2c51e62f54",
"metadata": {},
"outputs": [],
"source": [
"test_cols = list(\"abc\")\n",
"test_dict = {}\n",
"test_dict[\"df0\"] = pd.DataFrame(\n",
" data=[[8, 8, 0], \n",
" [0, 1, 1], \n",
" [2, 3, 1], \n",
" [7, 9, 7]], columns=test_cols\n",
")\n",
"test_dict[\"df1\"] = pd.DataFrame(\n",
" data=[[3, 8, 2], \n",
" [3, 8, 0], \n",
" [3, 9, 8], \n",
" [8, 2, 5]], columns=test_cols\n",
")\n",
"test_dict[\"df2\"] = pd.DataFrame(\n",
" data=[[8, 4, 3], \n",
" [7, 6, 3], \n",
" [4, 2, 9], \n",
" [6, 4, 0]], columns=test_cols\n",
")\n",
"\n",
"test_output = pd.DataFrame(data=[[9,9,6],[5.25,6.75,4.],[1,2,2]],columns=['df0','df1','df2'],index=['max','mean','min'])\n",
"\n",
"pdt.assert_frame_equal(calc_stats(test_dict, test_dict.keys(), 'b'),\n",
" test_output,\n",
" check_exact=False,\n",
" atol=0.01)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a11542ef-d432-47c9-b90e-b0f9cdc11af9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"test_input = pd.DataFrame(data=[[1, 5, 3], [7, 8, 9], [3, 4, 1]], columns=list(\"abc\"))\n",
"test_output = 7\n",
Expand All @@ -366,22 +409,13 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"id": "b3eff457-9f61-4c47-9276-90c893925944",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"# Here we create a function that checks the maximum magnitude for each array in the dataset\n",
"\n",
"df1 = pd.DataFrame(data=[[1, 5, 3], [7, 8, 9], [3, 4, 1]], columns=list(\"abc\"))\n",
"df2 = pd.DataFrame(data=[[7, 3, 2], [8, 4, 2], [5, 6, 4]], columns=list(\"abc\"))\n",
"df3 = pd.DataFrame(data=[[2, 6, 3], [1, 3, 6], [8, 9, 1]], columns=list(\"abc\"))\n",
Expand Down
74 changes: 73 additions & 1 deletion tests/test_models.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
"""Tests for statistics functions within the Model layer."""

import pandas as pd
import pandas.testing as pdt
import pytest

@pytest.mark.parametrize(
Expand Down Expand Up @@ -40,6 +41,12 @@ def test_max_mag(test_df, test_colname, expected):
columns=list("abc")),
"b",
0),
(pd.DataFrame(data=[[-7, -7, -3],
[-4, -3, -1],
[-1, -5, -3]],
columns=list("abc")),
"a",
-4),
])
def test_mean_mag(test_df, test_colname, expected):
"""Test mean function works for array of zeroes and positive integers."""
Expand Down Expand Up @@ -81,4 +88,69 @@ def test_max_mag_strings():

test_input_colname = "b"
with pytest.raises(TypeError):
error_expected = max_mag('string', test_input_colname)
error_expected = max_mag('string', test_input_colname)

def test_calc_stats():
""" Test calc_stats function works for multiple bands. """
from lcanalyzer.models import calc_stats

test_cols = list("abc")
test_dict = {}
test_dict["df0"] = pd.DataFrame(
data=[[8, 8, 0],
[0, 1, 1],
[2, 3, 1],
[7, 9, 7]], columns=test_cols
)
test_dict["df1"] = pd.DataFrame(
data=[[3, 8, 2],
[3, 8, 0],
[3, 9, 8],
[8, 2, 5]], columns=test_cols
)
test_dict["df2"] = pd.DataFrame(
data=[[8, 4, 3],
[7, 6, 3],
[4, 2, 9],
[6, 4, 0]], columns=test_cols
)

test_output = pd.DataFrame(data=[[9,9,6],[5.25,6.75,4.],[1,2,2]],columns=['df0','df1','df2'],index=['max','mean','min'])

pdt.assert_frame_equal(calc_stats(test_dict, test_dict.keys(), 'b'),
test_output,
check_exact=False,
atol=0.01)


# Parametrization for normalize_lc function testing
@pytest.mark.parametrize(
"test_input_df, test_input_colname, expected",
[
(pd.DataFrame(data=[[8, 9, 1],
[1, 4, 1],
[1, 2, 4],
[1, 4, 1]],
columns=list("abc")),
"b",
pd.Series(data=[1,0.285,0,0.285])),
(pd.DataFrame(data=[[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]],
columns=list("abc")),
"b",
pd.Series(data=[0.,0.,0.,0.])),
(pd.DataFrame(data=[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
columns=list("abc")),
"b",
pd.Series(data=[0.,0.,0.,0.])),
])
def test_normalize_lc(test_input_df, test_input_colname, expected):
"""Test how normalize_lc function works for arrays of positive integers."""
from lcanalyzer.models import normalize_lc
import pandas.testing as pdt
pdt.assert_series_equal(normalize_lc(test_input_df,test_input_colname),expected,check_exact=False,atol=0.01,check_names=False)