Skip to content

chonyy/apriori_python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

33a9c54 Β· Jul 22, 2024

History

17 Commits
Oct 25, 2020
Oct 26, 2020
Oct 25, 2020
Oct 25, 2020
Nov 2, 2023
Oct 25, 2020
Oct 25, 2020

Repository files navigation

Getting Started

Install the Pypi package using pip

pip install apriori_python

Then use it like

from apriori_python import apriori
itemSetList = [['eggs', 'bacon', 'soup'],
                ['eggs', 'bacon', 'apple'],
                ['soup', 'bacon', 'banana']]
freqItemSet, rules = apriori(itemSetList, minSup=0.5, minConf=0.5)
print(freqItemSet)
print(rules)  
# [[{'beer'}, {'rice'}, 0.6666666666666666], [{'rice'}, {'beer'}, 1.0]]
# rules[0] --> rules[1], confidence = rules[2]

Clone the repo

Get a copy of this repo using git clone

git clone https://github.com/chonyy/apriori_python.git

Run the program with dataset provided and default values for minSupport = 0.5 and minConfidence = 0.5

python apriori.py -f dataset.csv

Run program with dataset and min support and min confidence

python apriori.py -f ../dataset/tesco2.csv -s 0.5 -c 0.5

Concepts of Apriori

  • Support: Fraction of transactions that contain an itemset
  • Confidence: Measures how often items in Y appear in transactions that contain X
  • Frequent itemset: An itemset whose support is greater than or equal to a minSup threshold