Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Nov 21, 2025

📄 8% (0.08x) speedup for RoPEAttention.forward in ultralytics/models/sam/modules/blocks.py

⏱️ Runtime : 10.2 milliseconds 9.41 milliseconds (best of 35 runs)

📝 Explanation and details

The optimized code achieves an 8% speedup through several targeted PyTorch performance optimizations in the RoPEAttention forward method:

Key Optimizations Applied:

  1. Device Transfer Optimization: Caches the input device (device = q.device) and only transfers freqs_cis to the device when necessary, eliminating redundant .to(device) calls that were happening on every forward pass.

  2. Mathematical Pre-computation: Pre-computes c_per_head_sqrt = math.sqrt(c_per_head) instead of recalculating it inline during the attention scaling operation.

  3. Memory-Efficient Operations:

    • Uses torch.matmul() instead of the @ operator for better control
    • Adds .contiguous() to the permuted tensor for optimal memory layout
    • Employs in-place division with attn.div_() to reduce memory allocations
    • Uses in-place softmax with torch.softmax(..., out=attn) to reuse the attention tensor

Performance Impact:
These optimizations primarily reduce overhead from device transfers and memory operations. The line profiler shows the most significant improvements in:

  • Attention computation (20% vs 14.5% + 16% + 20.3% = 50.8% in original)
  • Reduced softmax overhead (9.1% vs 20.3% in original)
  • Elimination of redundant device transfers

Test Case Performance:
The optimizations show varying benefits across test cases:

  • Large-scale scenarios benefit most (up to 19.6% faster for large batch/token counts)
  • Small tensors show minimal or slight regression due to optimization overhead
  • Memory-intensive operations see consistent 2-7% improvements

This optimization is particularly valuable for transformer workloads with larger sequences or when RoPEAttention is called frequently, as the device transfer elimination and memory-efficient operations compound over multiple forward passes.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 96 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
# imports
import pytest
import torch
from ultralytics.models.sam.modules.blocks import RoPEAttention

# ----------- Basic Test Cases -----------


def test_forward_basic_square_tokens():
    """Test RoPEAttention.forward with typical square token count and standard settings."""
    batch_size = 2
    seq_len = 16  # 4x4 grid
    embedding_dim = 32
    num_heads = 4
    rope_attn = RoPEAttention(
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        feat_sizes=(4, 4),
    )
    q = torch.randn(batch_size, seq_len, embedding_dim)
    k = torch.randn(batch_size, seq_len, embedding_dim)
    v = torch.randn(batch_size, seq_len, embedding_dim)
    codeflash_output = rope_attn.forward(q, k, v)
    out = codeflash_output  # 222μs -> 240μs (7.55% slower)


def test_forward_basic_non_square_tokens():
    """Test RoPEAttention.forward with non-square token count and rope_k_repeat enabled."""
    batch_size = 1
    q_seq_len = 9  # 3x3 grid
    k_seq_len = 12  # 3x4 grid
    embedding_dim = 24
    num_heads = 2
    rope_attn = RoPEAttention(
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        feat_sizes=(4, 3),
        rope_k_repeat=True,
    )
    q = torch.randn(batch_size, q_seq_len, embedding_dim)
    k = torch.randn(batch_size, k_seq_len, embedding_dim)
    v = torch.randn(batch_size, k_seq_len, embedding_dim)
    codeflash_output = rope_attn.forward(q, k, v)
    out = codeflash_output


def test_forward_basic_downsample_rate():
    """Test RoPEAttention.forward with downsampling of embedding dimension."""
    batch_size = 1
    seq_len = 25  # 5x5 grid
    embedding_dim = 40
    num_heads = 4
    downsample_rate = 2
    rope_attn = RoPEAttention(
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        downsample_rate=downsample_rate,
        feat_sizes=(5, 5),
    )
    q = torch.randn(batch_size, seq_len, embedding_dim)
    k = torch.randn(batch_size, seq_len, embedding_dim)
    v = torch.randn(batch_size, seq_len, embedding_dim)
    codeflash_output = rope_attn.forward(q, k, v)
    out = codeflash_output


# ----------- Edge Test Cases -----------


def test_forward_edge_single_token():
    """Test RoPEAttention.forward with a single token (1x1 grid)."""
    batch_size = 1
    seq_len = 1
    embedding_dim = 8
    num_heads = 1
    rope_attn = RoPEAttention(
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        feat_sizes=(1, 1),
    )
    q = torch.randn(batch_size, seq_len, embedding_dim)
    k = torch.randn(batch_size, seq_len, embedding_dim)
    v = torch.randn(batch_size, seq_len, embedding_dim)
    codeflash_output = rope_attn.forward(q, k, v)
    out = codeflash_output  # 189μs -> 198μs (4.57% slower)


def test_forward_edge_zero_exclude_rope():
    """Test RoPEAttention.forward with num_k_exclude_rope=0 (all keys get RoPE)."""
    batch_size = 1
    seq_len = 4
    embedding_dim = 16
    num_heads = 2
    rope_attn = RoPEAttention(
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        feat_sizes=(2, 2),
    )
    q = torch.randn(batch_size, seq_len, embedding_dim)
    k = torch.randn(batch_size, seq_len, embedding_dim)
    v = torch.randn(batch_size, seq_len, embedding_dim)
    codeflash_output = rope_attn.forward(q, k, v, num_k_exclude_rope=0)
    out = codeflash_output  # 202μs -> 213μs (5.15% slower)


def test_forward_edge_some_exclude_rope():
    """Test RoPEAttention.forward with some keys excluded from RoPE."""
    batch_size = 1
    seq_len = 6
    embedding_dim = 12
    num_heads = 2
    rope_attn = RoPEAttention(
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        feat_sizes=(2, 3),
    )
    q = torch.randn(batch_size, seq_len, embedding_dim)
    k = torch.randn(batch_size, seq_len, embedding_dim)
    v = torch.randn(batch_size, seq_len, embedding_dim)
    # Exclude last 2 keys from RoPE
    codeflash_output = rope_attn.forward(q, k, v, num_k_exclude_rope=2)
    out = codeflash_output


def test_forward_edge_minimal_embedding_dim():
    """Test RoPEAttention.forward with minimal embedding dimension divisible by num_heads."""
    batch_size = 1
    seq_len = 4
    embedding_dim = 4
    num_heads = 1
    rope_attn = RoPEAttention(
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        feat_sizes=(2, 2),
    )
    q = torch.randn(batch_size, seq_len, embedding_dim)
    k = torch.randn(batch_size, seq_len, embedding_dim)
    v = torch.randn(batch_size, seq_len, embedding_dim)
    codeflash_output = rope_attn.forward(q, k, v)
    out = codeflash_output  # 203μs -> 207μs (1.87% slower)


def test_forward_edge_mismatched_qk_length_and_rope_k_repeat_false():
    """Test RoPEAttention.forward raises AssertionError when q and k lengths mismatch and rope_k_repeat is False."""
    batch_size = 1
    q_seq_len = 9
    k_seq_len = 12
    embedding_dim = 24
    num_heads = 2
    rope_attn = RoPEAttention(
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        feat_sizes=(4, 3),
        rope_k_repeat=False,
    )
    q = torch.randn(batch_size, q_seq_len, embedding_dim)
    k = torch.randn(batch_size, k_seq_len, embedding_dim)
    v = torch.randn(batch_size, k_seq_len, embedding_dim)
    with pytest.raises(AssertionError):
        rope_attn.forward(q, k, v)  # 150μs -> 144μs (4.04% faster)


def test_forward_edge_non_square_feat_sizes():
    """Test RoPEAttention.forward with non-square feat_sizes and token count."""
    batch_size = 1
    seq_len = 6  # 2x3 grid
    embedding_dim = 12
    num_heads = 2
    rope_attn = RoPEAttention(
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        feat_sizes=(2, 3),
    )
    q = torch.randn(batch_size, seq_len, embedding_dim)
    k = torch.randn(batch_size, seq_len, embedding_dim)
    v = torch.randn(batch_size, seq_len, embedding_dim)
    codeflash_output = rope_attn.forward(q, k, v)
    out = codeflash_output


def test_forward_edge_device_cpu_and_cuda():
    """Test RoPEAttention.forward works on both CPU and CUDA (if available)."""
    batch_size = 1
    seq_len = 16
    embedding_dim = 32
    num_heads = 4
    rope_attn = RoPEAttention(
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        feat_sizes=(4, 4),
    )
    q = torch.randn(batch_size, seq_len, embedding_dim)
    k = torch.randn(batch_size, seq_len, embedding_dim)
    v = torch.randn(batch_size, seq_len, embedding_dim)
    codeflash_output = rope_attn.forward(q, k, v)
    out_cpu = codeflash_output  # 235μs -> 238μs (1.23% slower)
    if torch.cuda.is_available():
        rope_attn = rope_attn.to("cuda")
        q_cuda = q.to("cuda")
        k_cuda = k.to("cuda")
        v_cuda = v.to("cuda")
        codeflash_output = rope_attn.forward(q_cuda, k_cuda, v_cuda)
        out_cuda = codeflash_output


# ----------- Large Scale Test Cases -----------


def test_forward_large_scale_max_tokens():
    """Test RoPEAttention.forward with large number of tokens, staying under 100MB tensor size."""
    batch_size = 2
    seq_len = 128  # 11KB per tensor for embedding_dim=32
    embedding_dim = 32
    num_heads = 4
    rope_attn = RoPEAttention(
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        feat_sizes=(16, 8),
    )
    q = torch.randn(batch_size, seq_len, embedding_dim)
    k = torch.randn(batch_size, seq_len, embedding_dim)
    v = torch.randn(batch_size, seq_len, embedding_dim)
    codeflash_output = rope_attn.forward(q, k, v)
    out = codeflash_output  # 417μs -> 396μs (5.41% faster)


def test_forward_large_scale_max_batch():
    """Test RoPEAttention.forward with large batch size."""
    batch_size = 16
    seq_len = 16  # 4x4 grid
    embedding_dim = 32
    num_heads = 4
    rope_attn = RoPEAttention(
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        feat_sizes=(4, 4),
    )
    q = torch.randn(batch_size, seq_len, embedding_dim)
    k = torch.randn(batch_size, seq_len, embedding_dim)
    v = torch.randn(batch_size, seq_len, embedding_dim)
    codeflash_output = rope_attn.forward(q, k, v)
    out = codeflash_output  # 283μs -> 281μs (0.673% faster)


def test_forward_large_scale_max_embedding_dim():
    """Test RoPEAttention.forward with large embedding dimension."""
    batch_size = 1
    seq_len = 16
    embedding_dim = 256
    num_heads = 8
    rope_attn = RoPEAttention(
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        feat_sizes=(4, 4),
    )
    q = torch.randn(batch_size, seq_len, embedding_dim)
    k = torch.randn(batch_size, seq_len, embedding_dim)
    v = torch.randn(batch_size, seq_len, embedding_dim)
    codeflash_output = rope_attn.forward(q, k, v)
    out = codeflash_output  # 315μs -> 325μs (3.05% slower)


def test_forward_large_scale_non_square_tokens_and_feat_sizes():
    """Test RoPEAttention.forward with large non-square token count and feat_sizes."""
    batch_size = 1
    seq_len = 240  # 16x15 grid
    embedding_dim = 32
    num_heads = 4
    rope_attn = RoPEAttention(
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        feat_sizes=(16, 15),
    )
    q = torch.randn(batch_size, seq_len, embedding_dim)
    k = torch.randn(batch_size, seq_len, embedding_dim)
    v = torch.randn(batch_size, seq_len, embedding_dim)
    codeflash_output = rope_attn.forward(q, k, v)
    out = codeflash_output  # 496μs -> 483μs (2.74% faster)


# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
# imports
import pytest  # used for our unit tests
import torch
from ultralytics.models.sam.modules.blocks import RoPEAttention

# function to test
# (The RoPEAttention.forward function and all dependencies are already defined above.)

# ---------------------------
# Basic Test Cases
# ---------------------------


def test_basic_forward_shape_and_type():
    """Test basic shape and dtype correctness for RoPEAttention.forward."""
    attn = RoPEAttention(embedding_dim=64, num_heads=4, feat_sizes=(8, 8))
    q = torch.randn(2, 64, 64)  # batch=2, seq=64, dim=64
    k = torch.randn(2, 64, 64)
    v = torch.randn(2, 64, 64)
    codeflash_output = attn.forward(q, k, v)
    out = codeflash_output  # 295μs -> 295μs (0.182% faster)


def test_forward_with_different_feat_sizes():
    """Test RoPEAttention with different feature sizes."""
    attn = RoPEAttention(embedding_dim=32, num_heads=2, feat_sizes=(4, 8))
    q = torch.randn(1, 32, 32)
    k = torch.randn(1, 32, 32)
    v = torch.randn(1, 32, 32)
    codeflash_output = attn.forward(q, k, v)
    out = codeflash_output  # 214μs -> 216μs (0.544% slower)


def test_forward_with_downsample_rate():
    """Test RoPEAttention with downsample_rate that reduces internal_dim."""
    attn = RoPEAttention(embedding_dim=32, num_heads=4, downsample_rate=2, feat_sizes=(4, 4))
    q = torch.randn(1, 16, 32)
    k = torch.randn(1, 16, 32)
    v = torch.randn(1, 16, 32)
    codeflash_output = attn.forward(q, k, v)
    out = codeflash_output  # 214μs -> 216μs (0.992% slower)


def test_forward_with_kv_in_dim():
    """Test RoPEAttention with kv_in_dim different from embedding_dim."""
    attn = RoPEAttention(embedding_dim=32, num_heads=4, kv_in_dim=16, feat_sizes=(4, 4))
    q = torch.randn(1, 16, 32)
    k = torch.randn(1, 16, 16)
    v = torch.randn(1, 16, 16)
    codeflash_output = attn.forward(q, k, v)
    out = codeflash_output  # 213μs -> 219μs (2.60% slower)


# ---------------------------
# Edge Test Cases
# ---------------------------


def test_forward_empty_sequence():
    """Test RoPEAttention with empty sequence (zero tokens)."""
    attn = RoPEAttention(embedding_dim=32, num_heads=4, feat_sizes=(1, 1))
    q = torch.randn(1, 0, 32)
    k = torch.randn(1, 0, 32)
    v = torch.randn(1, 0, 32)
    codeflash_output = attn.forward(q, k, v)
    out = codeflash_output


def test_forward_single_token():
    """Test RoPEAttention with a single token."""
    attn = RoPEAttention(embedding_dim=16, num_heads=2, feat_sizes=(1, 1))
    q = torch.randn(1, 1, 16)
    k = torch.randn(1, 1, 16)
    v = torch.randn(1, 1, 16)
    codeflash_output = attn.forward(q, k, v)
    out = codeflash_output  # 197μs -> 198μs (0.430% slower)


def test_forward_non_square_tokens():
    """Test RoPEAttention with non-square number of tokens (should recompute freqs_cis)."""
    attn = RoPEAttention(embedding_dim=32, num_heads=4, feat_sizes=(4, 4))
    q = torch.randn(1, 15, 32)  # 15 tokens (not a perfect square)
    k = torch.randn(1, 15, 32)
    v = torch.randn(1, 15, 32)
    codeflash_output = attn.forward(q, k, v)
    out = codeflash_output


def test_forward_with_num_k_exclude_rope():
    """Test RoPEAttention with num_k_exclude_rope > 0 (some keys not rotary encoded)."""
    attn = RoPEAttention(embedding_dim=32, num_heads=4, feat_sizes=(4, 4))
    q = torch.randn(1, 16, 32)
    k = torch.randn(1, 16, 32)
    v = torch.randn(1, 16, 32)
    codeflash_output = attn.forward(q, k, v, num_k_exclude_rope=4)
    out = codeflash_output


def test_forward_cross_attention_rope_k_repeat():
    """Test RoPEAttention with cross-attention (q tokens != k tokens, rope_k_repeat=True)."""
    attn = RoPEAttention(embedding_dim=32, num_heads=4, rope_k_repeat=True, feat_sizes=(4, 4))
    q = torch.randn(1, 8, 32)
    k = torch.randn(1, 16, 32)
    v = torch.randn(1, 16, 32)
    codeflash_output = attn.forward(q, k, v)
    out = codeflash_output


def test_forward_invalid_num_heads():
    """Test that RoPEAttention raises if num_heads does not divide internal_dim."""
    with pytest.raises(AssertionError):
        RoPEAttention(embedding_dim=30, num_heads=4, feat_sizes=(4, 4))


def test_forward_invalid_feat_sizes():
    """Test that RoPEAttention can handle feat_sizes that do not match token count."""
    attn = RoPEAttention(embedding_dim=32, num_heads=4, feat_sizes=(2, 8))
    q = torch.randn(1, 16, 32)
    k = torch.randn(1, 16, 32)
    v = torch.randn(1, 16, 32)
    codeflash_output = attn.forward(q, k, v)
    out = codeflash_output  # 224μs -> 234μs (4.30% slower)


def test_forward_device_cpu_and_cuda():
    """Test RoPEAttention works on both CPU and CUDA if available."""
    attn = RoPEAttention(embedding_dim=32, num_heads=4, feat_sizes=(4, 4))
    q = torch.randn(1, 16, 32)
    k = torch.randn(1, 16, 32)
    v = torch.randn(1, 16, 32)
    codeflash_output = attn.forward(q, k, v)
    out_cpu = codeflash_output  # 214μs -> 217μs (1.60% slower)
    if torch.cuda.is_available():
        attn = attn.to("cuda")
        q = q.to("cuda")
        k = k.to("cuda")
        v = v.to("cuda")
        codeflash_output = attn.forward(q, k, v)
        out_cuda = codeflash_output


# ---------------------------
# Large Scale Test Cases
# ---------------------------


def test_forward_large_batch_and_tokens():
    """Test RoPEAttention with large batch and token count (within memory limits)."""
    batch = 8
    tokens = 128
    embedding_dim = 64
    num_heads = 8
    attn = RoPEAttention(embedding_dim=embedding_dim, num_heads=num_heads, feat_sizes=(16, 8))
    q = torch.randn(batch, tokens, embedding_dim)
    k = torch.randn(batch, tokens, embedding_dim)
    v = torch.randn(batch, tokens, embedding_dim)
    codeflash_output = attn.forward(q, k, v)
    out = codeflash_output  # 2.42ms -> 2.03ms (19.6% faster)


def test_forward_large_embedding_dim():
    """Test RoPEAttention with large embedding dimension (but <100MB tensor)."""
    batch = 2
    tokens = 64
    embedding_dim = 256
    num_heads = 8
    attn = RoPEAttention(embedding_dim=embedding_dim, num_heads=num_heads, feat_sizes=(8, 8))
    q = torch.randn(batch, tokens, embedding_dim)
    k = torch.randn(batch, tokens, embedding_dim)
    v = torch.randn(batch, tokens, embedding_dim)
    codeflash_output = attn.forward(q, k, v)
    out = codeflash_output  # 790μs -> 769μs (2.61% faster)


def test_forward_large_cross_attention():
    """Test RoPEAttention with large cross-attention (q tokens != k tokens)."""
    batch = 2
    q_tokens = 64
    k_tokens = 128
    embedding_dim = 64
    num_heads = 8
    attn = RoPEAttention(embedding_dim=embedding_dim, num_heads=num_heads, rope_k_repeat=True, feat_sizes=(16, 8))
    q = torch.randn(batch, q_tokens, embedding_dim)
    k = torch.randn(batch, k_tokens, embedding_dim)
    v = torch.randn(batch, k_tokens, embedding_dim)
    codeflash_output = attn.forward(q, k, v)
    out = codeflash_output  # 543μs -> 526μs (3.39% faster)


def test_forward_memory_efficiency():
    """Test RoPEAttention does not exceed 100MB for input tensors."""
    batch = 1
    tokens = 512
    embedding_dim = 32
    num_heads = 4
    attn = RoPEAttention(embedding_dim=embedding_dim, num_heads=num_heads, feat_sizes=(32, 16))
    q = torch.randn(batch, tokens, embedding_dim)
    k = torch.randn(batch, tokens, embedding_dim)
    v = torch.randn(batch, tokens, embedding_dim)
    # Each tensor is ~64KB, well below 100MB
    codeflash_output = attn.forward(q, k, v)
    out = codeflash_output  # 1.51ms -> 1.40ms (7.61% faster)


# ---------------------------
# Mutation Testing: Output Consistency
# ---------------------------


def test_forward_output_consistency():
    """Test that RoPEAttention.forward is deterministic given the same inputs and weights."""
    torch.manual_seed(42)
    attn = RoPEAttention(embedding_dim=32, num_heads=4, feat_sizes=(4, 4))
    q = torch.randn(1, 16, 32)
    k = torch.randn(1, 16, 32)
    v = torch.randn(1, 16, 32)
    codeflash_output = attn.forward(q, k, v)
    out1 = codeflash_output  # 213μs -> 220μs (2.91% slower)
    codeflash_output = attn.forward(q, k, v)
    out2 = codeflash_output  # 137μs -> 134μs (1.75% faster)


def test_forward_gradients():
    """Test RoPEAttention.forward supports gradient computation."""
    attn = RoPEAttention(embedding_dim=16, num_heads=2, feat_sizes=(4, 4))
    q = torch.randn(1, 4, 16, requires_grad=True)
    k = torch.randn(1, 4, 16, requires_grad=True)
    v = torch.randn(1, 4, 16, requires_grad=True)
    codeflash_output = attn.forward(q, k, v)
    out = codeflash_output
    loss = out.sum()
    loss.backward()


# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-RoPEAttention.forward-mi8gmih5 and push.

Codeflash Static Badge

The optimized code achieves an 8% speedup through several targeted PyTorch performance optimizations in the RoPEAttention forward method:

**Key Optimizations Applied:**

1. **Device Transfer Optimization**: Caches the input device (`device = q.device`) and only transfers `freqs_cis` to the device when necessary, eliminating redundant `.to(device)` calls that were happening on every forward pass.

2. **Mathematical Pre-computation**: Pre-computes `c_per_head_sqrt = math.sqrt(c_per_head)` instead of recalculating it inline during the attention scaling operation.

3. **Memory-Efficient Operations**: 
   - Uses `torch.matmul()` instead of the `@` operator for better control
   - Adds `.contiguous()` to the permuted tensor for optimal memory layout
   - Employs in-place division with `attn.div_()` to reduce memory allocations
   - Uses in-place softmax with `torch.softmax(..., out=attn)` to reuse the attention tensor

**Performance Impact:**
These optimizations primarily reduce overhead from device transfers and memory operations. The line profiler shows the most significant improvements in:
- Attention computation (20% vs 14.5% + 16% + 20.3% = 50.8% in original)
- Reduced softmax overhead (9.1% vs 20.3% in original)
- Elimination of redundant device transfers

**Test Case Performance:**
The optimizations show varying benefits across test cases:
- **Large-scale scenarios** benefit most (up to 19.6% faster for large batch/token counts)
- **Small tensors** show minimal or slight regression due to optimization overhead
- **Memory-intensive operations** see consistent 2-7% improvements

This optimization is particularly valuable for transformer workloads with larger sequences or when RoPEAttention is called frequently, as the device transfer elimination and memory-efficient operations compound over multiple forward passes.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 November 21, 2025 06:09
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash labels Nov 21, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant