-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathParsingModule.py
417 lines (376 loc) · 19.4 KB
/
ParsingModule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import pronto
from pronto import Ontology
from collections import defaultdict
import json
import gzip
import pickle
import streamlit as st
import numpy as np
import pandas as pd
import re
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode, DataReturnMode
from streamlit_tree_select import tree_select
def help():
"""This module contains all parsable functions necessary to build the SDRF GUI"""
print("This module contains all parsable functions necessary to build the SDRF GUI")
print(
"The get_json_subclasses function returns a nested dictionary of all subclasses of a given term in a json ontology"
)
print(
"The get_obo_subclasses function returns a nested dictionary of all subclasses of a given term in an obo ontology"
)
print("The flatten function returns a list of all values in a nested dictionary")
print(
"The transform_nested_dict_to_tree function returns a list of dictionaries that can be used to build a tree in streamlit"
)
print(
"The store_as_gzipped_json function stores a dictionary/list as a gzipped json file"
)
print(
"The open_gzipped_json function opens a gzipped json file and returns the dictionary/list"
)
def get_json_subclasses(ontology, term_id, term_label, d, nodes_dict=None, data=None):
"""This function takes the path to the ontology file in json format, the desired term id from the root node (e.g. http://www.ebi.ac.uk/efo/EFO_0000635) and the term label (e.g. 'organism part')
and returns a nested dictionary of all subclasses of the given term.
"""
if nodes_dict is None: # load the json file only once
with open(ontology) as f:
data = json.load(f)
nodes_dict = {
node["id"]: node["lbl"]
for node in data["graphs"][0]["nodes"]
if all(key in node for key in ["id", "lbl"])
}
if term_id not in nodes_dict:
return f"{term_id} node not in ontology" # node not found in ontology, return early
if term_label not in d:
d[term_label] = {} # add the parent to the dictionary
for term in data["graphs"][0]["edges"]: # iterate through the edges
if (term["obj"] == term_id) and (
term["pred"] in ["http://purl.obolibrary.org/obo/BFO_0000050", "is_a"]
):
parent = term["sub"]
if parent == "http://purl.obolibrary.org/obo/MONDO_0011876":
continue # skip MONDO_0011876
parent_label = nodes_dict.get(parent)
if parent_label is not None:
if parent_label in d:
d[term_label][parent_label] = d[parent_label]
del d[parent_label]
else:
d[term_label][parent_label] = {}
get_json_subclasses(
ontology, parent, parent_label, d[term_label], nodes_dict, data
)
return d
def remove_duplicate_values(d):
for k, v in d.items():
if isinstance(v, dict):
remove_duplicate_values(v)
if k in v:
del v[k]
return d
def get_obo_subclasses(onto, obo_id, obo_label, d=None, distance=1):
if d is None:
d = defaultdict(dict)
"""This function is built on pronto.
It takes the path to the ontology file in obo format, the desired term id from the root node (e.g. MS:1000031) and the term label (e.g. 'instrument model')
and returns a nested dictionary of all subclasses of the given term. To only get the direct subclasses, the distance is set to 1
"""
subclasses = list(onto[obo_id].subclasses(distance=1))
if len(subclasses) > 1:
d[obo_label] = {}
for i in subclasses[1:]:
obo_id = i.id
obo_label = i.name
d[obo_label] = get_obo_subclasses(
onto, obo_id, obo_label, defaultdict(dict), distance=1
)
else:
d = {}
d = remove_dupcliate_values(d)
return d
def flatten(d):
"""This function takes a nested dictionary and returns all unique elements in the dictionary as a list"""
if not isinstance(d, dict):
print("Input is not a dictionary")
items = []
for k, v in d.items(): # iterate through the dictionary
items.append(k) # add the key to the list
if isinstance(
v, dict
): # if the value is a dictionary, call the function recursively
items.extend(flatten(v))
else:
items.append(v)
items = list(set(items))
return items
def transform_nested_dict_to_tree(d, parent_label=None, parent_value=None):
"""This function takes a nested dictionary and returns a tree like dictionary that can be used in streamlit streamlit_tree_select"""
if not isinstance(d, dict):
print("Input is not a dictionary")
result = []
for key, value in d.items():
label = key
if parent_label:
label = f"{parent_label} , {key}"
children = []
if value:
children = transform_nested_dict_to_tree(value, label, key)
if children:
result.append({"label": key, "value": label, "children": children})
else:
result.append({"label": key, "value": label})
return result
def store_as_gzipped_json(data, filename):
""" "Given a datatype to store and the filename, this function stores the data as a gzipped json file in .\\data"""
path = (
".\\data\\"
+ filename
+ ".json.gz"
)
with gzip.open(path, "wt") as f:
json.dump(data, f)
return f"Stored {filename} as gzipped json"
def open_gzipped_json(filename):
""" "Given a filename, this function opens the data that was stored as a gzipped json in .\\data"""
path = (
".\\data\\"
+ filename
+ ".json.gz"
)
with gzip.open(path, "rt") as f:
data = json.load(f)
return data
def fill_in_from_list(df, column, values_list=None, multiple_in_one=False):
"""provide dataframe, column and optional a list of values.
reates an editable dataframe in which only that column can be modified possibly with the values from the list
If the list is empty, the column is freely editable
If the list contains only one value, the column is filled with that value
If the list contains more than one value, a dropdown menu is created with the values from the list
If multiple_in_one is True, multiple columns are created with the same dropdown menu"""
columns_to_adapt = [column]
df.fillna("empty", inplace=True)
cell_style = {"background-color": "#ffa478"}
builder = GridOptionsBuilder.from_dataframe(df)
if values_list and (len(values_list)==1): # if there is only one value, fill in the column with that value
df[column] = values_list[0]
df.replace("empty", np.nan, inplace=True)
elif values_list and (len(values_list)>1): # if there is a list of values, add a dropdown menu to the column
# add '' to the beginning of values list so it starts with an empty input
values_list.insert(0, "")
values_list.insert(1, "NA") #add NA
if multiple_in_one: # add columns based on number of values in values_list
for i in range(len(values_list)-1):
df[f"{column}_{i}"] = ""
columns_to_adapt.append(f"{column}_{i}")
builder.configure_columns(columns_to_adapt, editable=True, cellEditor="agSelectCellEditor", cellEditorParams={"values": values_list}, cellStyle = cell_style)
else: # if not multiple_in_one, just add the column
builder.configure_column(column,editable=True,cellEditor="agSelectCellEditor",cellEditorParams={"values": values_list}, cellStyle = cell_style)
builder.configure_grid_options(enableRangeSelection=True, enableFillHandle=True, suppressMovableColumns=True, singleClickEdit=True)
gridOptions = builder.build()
grid_return = AgGrid(
df,
gridOptions=gridOptions,
update_mode=GridUpdateMode.MANUAL,
data_return_mode=DataReturnMode.AS_INPUT)
df = grid_return["data"]
df.replace("empty", np.nan, inplace=True)
elif values_list is None: # if there is no list of values, make the column editable
builder.configure_column(column, editable=True, cellStyle = cell_style)
builder.configure_grid_options(enableRangeSelection=True, enableFillHandle=True, suppressMovableColumns=True, singleClickEdit=True)
gridOptions = builder.build()
grid_return = AgGrid(
df,
gridOptions=gridOptions,
update_mode=GridUpdateMode.MANUAL,
data_return_mode=DataReturnMode.AS_INPUT)
df = grid_return["data"]
df.replace("empty", np.nan, inplace=True)
return df
def multiple_ontology_tree(column, element_list, nodes, df, multiple_in_one = False):
"""
This function asks the column name, all the elements for the drop down menu and the nodes for the tree.
It asks for the number of inputs and then creates the input dataframe with in-cell drop down menus with the chosen values.
"""
#get index of column based on name
if column not in df.columns:
df[column] = np.nan
index = df.columns.get_loc(column)
col1, col2, col3 = st.columns(3)
columns_to_adapt = [column]
with col1:
multiple = st.radio(f"Are there multiple {column} in your data?", ("No", "Yes"))
if multiple == "Yes":
with col2:
number = st.number_input(
f"How many different {column} are in your data?",
min_value=0,
step=1)
with col3:
if multiple_in_one:
multiple_in_one_sel = st.radio(f"Are there multiple {column} within one sample?", ("No", "Yes"))
if multiple_in_one_sel == "Yes":
for i in range(number-1):
# add column next to the original column if it is not already there
if f"{column}_{i+1}" not in df.columns:
df.insert(index+1, f"{column}_{i+1}", "empty")
columns_to_adapt.append(f"{column}_{i+1}")
else:
number = 1
with st.form("Select here your ontology terms using the autocomplete function or the ontology-based tree menu", clear_on_submit=True):
col4, col5 = st.columns(2)
with col4:
# selectbox with search option
element_list.append(" ")
element_list = set(element_list)
return_search = st.multiselect(
"Select your matching ontology term using this autocomplete function",
element_list,
max_selections=number,
)
with col5:
st.write("Or follow the ontology based drop down menu below")
return_select = tree_select(
nodes, no_cascade=True, expand_on_click=True, check_model="leaf"
)
all = return_search + return_select["checked"]
all = [i.split(',')[-1] for i in all if i is not None]
if (len(all) >= 1) & (len(all) != number):
st.error(f"You need to select a total of {number}.")
s = st.form_submit_button("Submit selection")
if s:
st.write(f"Selection contains: {all}")
if s & (len(all) == 1) & number == 1:
df[column] = all[0]
st.experimental_rerun()
else:
df.fillna("empty", inplace=True)
st.write(f"If all cells are correctly filled in click twice on the update button")
cell_style = {"background-color": "#ffa478"}
builder = GridOptionsBuilder.from_dataframe(df)
builder.configure_columns(columns_to_adapt,editable=True,cellEditor="agSelectCellEditor",cellEditorParams={"values": all},cellStyle=cell_style)
builder.configure_grid_options(enableRangeSelection=True, enableFillHandle=True, suppressMovableColumns=True, singleClickEdit=True)
go = builder.build()
grid_return = AgGrid(df,gridOptions=go,update_mode=GridUpdateMode.MANUAL,data_return_mode=DataReturnMode.AS_INPUT)
df = grid_return["data"]
df.replace("empty", np.nan, inplace=True)
return df
def convert_df(df):
return df.to_csv(index=False).encode("utf-8")
# function check_df_for_ontology_terms
# checks if the dataframe contains ontology terms
def check_df_for_ontology_terms(df, columns_to_check, column_ontology_dict):
clear_columns = []
for i in columns_to_check:
name = (i.split('[')[-1].split(']')[0]).replace(' ', '_')
name = 'all_' + name + '_elements'
#if the column is an ontology column
if name in column_ontology_dict.keys():
onto_elements = column_ontology_dict[name]
elements = df[i].unique()
elements = [i for i in elements if i is not np.nan]
# check if elements are all in onto_elements
# if not, return the elements that are not in the ontology
if not set(elements).issubset(set(onto_elements)):
not_in_onto = set(elements) - set(onto_elements)
st.error(f'The following elements are not in the ontology: {not_in_onto}')
clear_columns.append(i)
elif set(elements).issubset(set(onto_elements)) and len(elements) >= 1:
st.success(f'The column {i} contains only ontology terms')
if i == 'characteristics[age]':
if not check_age_format(df, 'characteristics[age]'):
st.error(f'The age format is not correct. Please use the following format: 1Y 2M 3D')
clear_columns.append(i)
if i == 'characteristics[sex]':
uniques = np.unique(df[i].values())
accepted = ['M', 'F', 'unknown']
# check if uniques contain value that is not in accepted
if not set(uniques).issubset(set(accepted)):
not_in_onto = set(uniques) - set(accepted)
st.error(f'{not_in_onto} are not accepted in the characteristics[sex] column. Please use M, F or unknown')
clear_columns.append(i)
# if there are columns that are not in the ontology, ask if the user wants to clear them
if len(clear_columns) >= 1:
st.error(f'The following columns contain elements that are not in the ontology: {clear_columns}')
st.write('Do you want to clear these columns?')
y = st.checkbox("Yes")
n = st.checkbox("No")
if y:
for i in clear_columns:
df[i] = np.nan
st.success(f'Column {i} has been cleared')
def check_age_format(df, column):
"""
Check if the data in a column in a pandas dataframe follows the age formatting of Y M D.
If a range, this should be formatted as e.g. 48Y-84Y.
Parameters:
df (pandas.DataFrame): The pandas dataframe to check.
column (str): The name of the column to check.
Returns:
tuple: (bool, list) where bool indicates if all data in the column follows the age formatting
and list contains the wrong parts (if any).
"""
wrong_parts = []
for index, row in df.iterrows():
if row[column] not in ["", "empty", "None", "Not available"]:
if not re.match(r"^(\s*\d+\s*Y)?(\s*\d+\s*M)?(\s*\d+\s*D)?(|\s*-\s*\d+\s*Y)?(|\s*-\s*\d+\s*M)?(|\s*-\s*\d+\s*D)?(/)?(|\s*\d+\s*Y)?(|\s*\d+\s*M)?(|\s*\d+\s*D)?$", str(row[column])):
wrong_parts.append(row[column])
return False if wrong_parts else True, wrong_parts
def convert_df(df):
"""This function requires a dataframe and sorts its columns as source name - characteristics - others - comment.
Leading and trailing whitespaces are removed from all columns
It then converts the dataframe to a tsv file and downloads it
It also adds an comment[tool metadata] to indicate it was built with lesSDRF and ontology versioning"""
df["comment[tool metadata]"] = "lesSDRF v0.1.0"
#sort dataframe so that "source name" is the first column
cols = df.columns.tolist()
#get all elements from the list that start with "characteristic" and sort them alphabetically
characteristic_cols = sorted([i for i in cols if i.startswith("characteristic")])
#first elements in characteric_cols should always be characteristics[organism] characteristics[organism part]
if "characteristics[organism]" in characteristic_cols:
characteristic_cols.remove("characteristics[organism]")
characteristic_cols.insert(0, "characteristics[organism]")
if "characteristics[organism part]" in characteristic_cols:
characteristic_cols.remove("characteristics[organism part]")
characteristic_cols.insert(1, "characteristics[organism part]")
comment_cols = sorted([i for i in cols if i.startswith("comment")])
factor_value_cols = sorted([i for i in cols if i.startswith("factor")])
#get all columns that don't start with "characteristic" or "comment"
other_cols = [i for i in cols if i not in characteristic_cols and i not in comment_cols and i not in factor_value_cols and i not in ["source name"]]
#reorder the columns
new_cols = ["source name"] + characteristic_cols + other_cols + comment_cols + factor_value_cols
df = df[new_cols]
#if a column name contains _ followed by a number, remove the underscore and the number
df.columns = [re.sub(r"(_\d+)", "", i) for i in df.columns]
#remove leading and trailing whitespaces from all columns
df = df.apply(lambda x: x.str.strip() if x.dtype == "object" else x)
return df.to_csv(index=False, sep="\t").encode("utf-8")
def autocomplete_species_search(taxum_list, search_term):
col1, col2 = st.columns(2)
if (search_term != "") and (search_term != None):
# Use the filter method to dynamically filter the list of options
filtered_options = list(filter(lambda x: search_term.lower() in x.lower(), taxum_list))
exact_match = list(filter(lambda x: search_term.lower() == x.lower(), taxum_list))
if exact_match:
with col1:
st.write(f"An exact match was found: **{exact_match[0]}**")
with col2:
use_exact_match = st.checkbox("Use exact match", key=f"exact_{search_term}")
if use_exact_match:
return exact_match[0]
# if length is between 0 and 500, display the options
if len(filtered_options) > 0 and len(filtered_options) < 500:
with col1:
selected_options = st.multiselect("Some options closely matching your search time could be found", filtered_options)
# Display the selected options
with col2:
if selected_options:
st.write("You selected:", selected_options)
use_options = st.checkbox("Use selected options", key=f"selected_{search_term}")
if use_options:
return selected_options
if len(filtered_options) > 500:
st.write("Too many closely related options to display (>500). Please refine your search.")
if len(filtered_options) == 0:
st.write("No options found. Please refine your search.")