Skip to content

coralogix/llm-tracekit

Repository files navigation

LLM Tracekit

This library contains modified versions of the OpenTelemetry instrumentaions for OpenAI, Bedrock and the Openai Agents SDK, designed to simplify LLM application development and production tracing and debugging.

Installation

OpenAI

pip install llm-tracekit[openai]

Bedrock

pip install llm-tracekit[bedrock]

OpenAI Agents SDK

This instrumentation requires Python 3.10+

pip install llm-tracekit[openai_agents]

Usage

This section describes how to set up instrumentation. The examples will use the OpenAI instrumentation, but the usage is similar for all instrumentations. You can replace OpenAIInstrumentor with BedrockInstrumentor or OpenAIAgentsInstrumentor depending on your use case.

Setting up tracing

You can use the setup_export_to_coralogix function to setup tracing and export traces to Coralogix

from llm_tracekit import setup_export_to_coralogix

setup_export_to_coralogix(
    service_name="ai-service",
    application_name="ai-application",
    subsystem_name="ai-subsystem",
    capture_content=True,
)

Alternatively, you can set up tracing manually:

from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import SimpleSpanProcessor

tracer_provider = TracerProvider(
    resource=Resource.create({SERVICE_NAME: "ai-service"}),
)
exporter = OTLPSpanExporter()
span_processor = SimpleSpanProcessor(exporter)
tracer_provider.add_span_processor(span_processor)
trace.set_tracer_provider(tracer_provider)

Activation

To instrument all clients, call the instrument method

from llm_tracekit import OpenAIInstrumentor

OpenAIInstrumentor().instrument()

Enabling message content

Message content such as the contents of the prompt, completion, function arguments and return values are not captured by default. To capture message content as span attributes, do one of the following:

  • Pass capture_content=True when calling setup_export_to_coralogix
  • Set the environment variable OTEL_INSTRUMENTATION_GENAI_CAPTURE_MESSAGE_CONTENT to true

Most Coralogix AI evaluations will not work without message contents, so it is highly recommended to enable capturing.

Uninstrument

To uninstrument clients, call the uninstrument method:

OpenAIInstrumentor().uninstrument()

Full Example

from llm_tracekit import OpenAIInstrumentor, setup_export_to_coralogix
from openai import OpenAI

# Optional: Configure sending spans to Coralogix
# Reads Coralogix connection details from the following environment variables:
# - CX_TOKEN
# - CX_ENDPOINT
setup_export_to_coralogix(
    service_name="ai-service",
    application_name="ai-application",
    subsystem_name="ai-subsystem",
    capture_content=True,
)

# Activate instrumentation
OpenAIInstrumentor().instrument()

# Example OpenAI Usage
client = OpenAI()
response = client.chat.completions.create(
    model="gpt-4o-mini",
    messages=[
        {"role": "user", "content": "Write a short poem on open telemetry."},
    ],
)

Changes from OpenTelemetry

General

  • The user parameter in the OpenAI Chat Completions API is now recorded in the span as the gen_ai.openai.request.user attribute
  • The tools parameter in the OpenAI Chat Completions API is now recorded in the span as the gen_ai.openai.request.tools attributes.
  • User prompts and model responses are captured as span attributes instead of log events (see Semantic Conventions below)

For OpenAI Agents SDK

  • Agent & Tool Spans: Creates dedicated spans for each agent execution and for each tool call, providing clear visibility into the agent's inner workings.
  • Enriched Spans: Automatically adds agent-specific attributes like the agent's name to the relevant spans.

Semantic Conventions

Attribute Type Description Examples
gen_ai.prompt.<message_number>.role string Role of message author for user message <message_number> system, user, assistant, tool
gen_ai.prompt.<message_number>.content string Contents of user message <message_number> What's the weather in Paris?
gen_ai.prompt.<message_number>.tool_calls.<tool_call_number>.id string ID of tool call in user message <message_number> call_O8NOz8VlxosSASEsOY7LDUcP
gen_ai.prompt.<message_number>.tool_calls.<tool_call_number>.type string Type of tool call in user message <message_number> function
gen_ai.prompt.<message_number>.tool_calls.<tool_call_number>.function.name string The name of the function used in tool call within user message <message_number> get_current_weather
gen_ai.prompt.<message_number>.tool_calls.<tool_call_number>.function.arguments string Arguments passed to the function used in tool call within user message <message_number> {"location": "Seattle, WA"}
gen_ai.prompt.<message_number>.tool_call_id string Tool call ID in user message <message_number> call_mszuSIzqtI65i1wAUOE8w5H4
gen_ai.completion.<choice_number>.role string Role of message author for choice <choice_number> in model response assistant
gen_ai.completion.<choice_number>.finish_reason string Finish reason for choice <choice_number> in model response stop, tool_calls, error
gen_ai.completion.<choice_number>.content string Contents of choice <choice_number> in model response The weather in Paris is rainy and overcast, with temperatures around 57°F
gen_ai.completion.<choice_number>.tool_calls.<tool_call_number >.id string ID of tool call in choice <choice_number> call_O8NOz8VlxosSASEsOY7LDUcP
gen_ai.completion.<choice_number>.tool_calls.<tool_call_number >.type string Type of tool call in choice <choice_number> function
gen_ai.completion.<choice_number>.tool_calls.<tool_call_number >.function.name string The name of the function used in tool call within choice <choice_number> get_current_weather
gen_ai.completion.<choice_number>.tool_calls.<tool_call_number >.function.arguments string Arguments passed to the function used in tool call within choice <choice_number> {"location": "Seattle, WA"}

OpenAI specific attributes

Attribute Type Description Examples
gen_ai.openai.request.user string A unique identifier representing the end-user [email protected]
gen_ai.openai.request.tools.<tool_number>.type string Type of tool entry in tools list function
gen_ai.openai.request.tools.<tool_number>.function.name string The name of the function to use in tool calls get_current_weather
gen_ai.openai.request.tools.<tool_number>.function.description string Description of the function Get the current weather in a given location
gen_ai.openai.request.tools.<tool_number>.function.parameters string JSON describing the schema of the function parameters {"type": "object", "properties": {"location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}}, "required": ["location"]}

Bedrock specific attributes

Attribute Type Description Examples
gen_ai.bedrock.agent_alias.id string The ID of the agent-alias in an invoke_agent call [email protected]
gen_ai.bedrock.request.tools.<tool_number>.function.name string The name of the function to use in tool calls get_current_weather
gen_ai.bedrock.request.tools.<tool_number>.function.description string Description of the function Get the current weather in a given location
gen_ai.bedrock.request.tools.<tool_number>.function.parameters string JSON describing the schema of the function parameters {"type": "object", "properties": {"location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}}, "required": ["location"]}

OpenAI Agents SDK specific attributes

Agent spans

These spans represent the execution of a single agent. They act as parents for LLM calls, guardrails, and handoffs initiated by that agent.

Attribute Type Description Example
type string The type of the span, identifying it as an agent execution. agent
agent_name string The name of the agent being executed. Assistant
handoffs string[] A list of other agents that this agent is capable of handing off to. ["WeatherAgent"]
tools string[] A list of tools (functions) available to this agent. ["get_current_weather"]
output_type string The expected data type of the agent's final output. MessageOutput

Guardrail spans

These spans represent the execution of a guardrail check.

Attribute Type Description Example
type string The type of the span, identifying it as a guardrail. guardrail
name string The unique name of the guardrail being executed. MathGuardrail
triggered boolean Indicates whether the guardrail condition was met (and triggered). false

Handoff spans

These spans represent the moment an agent attempts to delegate a task to another agent.

Handling Multiple Handoffs: If the LLM attempts to hand off to multiple agents in a single turn, the to_agent attribute will only contain the name of the first agent in the list. The span will also be marked with an error status to indicate this ambiguity.

Attribute Type Description Example
type string The type of the span, identifying it as a handoff. handoff
from_agent string The name of the agent initiating the handoff. Assistant
to_agent string The name of the agent intended to receive the handoff. WeatherAgent

Function spans

These spans represent the execution of a tool (a Python function).

Attribute Type Description Example
type string The type of the span, identifying it as a function. function
name string The name of the function that was called. get_current_weather
input string The JSON string of arguments passed to the function. {"city":"Tel Aviv"}
output string The string representation of the function's return value. The weather in Tel Aviv is 30°C and sunny.

Enriched LLM call spans

These attributes are added to the existing span to link LLM calls back to the responsible agent.

Attribute Type Description Example
gen_ai.agent.name string The name of the agent that initiated this LLM call. Assistant, WeatherAgent

About

No description, website, or topics provided.

Resources

License

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 5

Languages