-
Notifications
You must be signed in to change notification settings - Fork 225
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
perf: read_off remove pandas.read_csv skiprows
Using the already seeked file avoids the need for pandas to reparse the first rows of the file to find the starting position. --- Also, improve robustness of header parsing a bit. In particular, ModelNet40 has faulty headers: ```bash $ head -n 1 ModelNet40/chair/train/chair_0856.off OFF6586 5534 0 ``` For reference, the correct format is: ``` OFF 6586 5534 0 ``` Nonetheless, it is still valuable to parse the faulty header.
- Loading branch information
1 parent
248fd0f
commit fa353ac
Showing
1 changed file
with
38 additions
and
27 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,62 +1,73 @@ | ||
import pandas as pd | ||
import re | ||
|
||
import numpy as np | ||
import pandas as pd | ||
|
||
|
||
def read_off(filename): | ||
|
||
with open(filename) as off: | ||
|
||
first_line = off.readline() | ||
with open(filename) as f: | ||
first_line = f.readline() | ||
if "OFF" not in first_line: | ||
raise ValueError('The file does not start with the word OFF') | ||
color = True if "C" in first_line else False | ||
raise ValueError("The file does not start with the word OFF") | ||
has_color = "C" in first_line | ||
|
||
n_points = 0 | ||
n_faces = 0 | ||
num_rows = None | ||
n_points = None | ||
n_faces = None | ||
|
||
count = 1 | ||
for line in off: | ||
count += 1 | ||
# Deal with faulty headers, e.g. "OFF4 4 0". | ||
m = re.match(r"^(?P<prefix>\D)([\d\s]+)$", first_line) | ||
if m: | ||
f.seek(len(m.group("prefix"))) | ||
|
||
# Read header. | ||
for line in f: | ||
if line.startswith("#"): | ||
continue | ||
line = line.strip().split() | ||
if len(line) > 1: | ||
n_points = int(line[0]) | ||
n_faces = int(line[1]) | ||
break | ||
if len(line) <= 1: | ||
continue | ||
n_points = int(line[0]) | ||
n_faces = int(line[1]) | ||
num_rows = n_points + n_faces | ||
break | ||
|
||
if (n_points == 0): | ||
raise ValueError('The file has no points') | ||
if num_rows is None: | ||
raise ValueError("The file does not contain a valid header") | ||
|
||
if n_points == 0: | ||
raise ValueError("The file contains no points") | ||
|
||
data = {} | ||
point_names = ["x", "y", "z"] | ||
point_types = {'x': np.float32, 'y': np.float32, 'z': np.float32} | ||
point_types = {"x": np.float32, "y": np.float32, "z": np.float32} | ||
|
||
if color: | ||
if has_color: | ||
point_names.extend(["red", "green", "blue"]) | ||
point_types = dict(point_types, **{'red': np.uint8, 'green': np.uint8, 'blue': np.uint8}) | ||
color_point_types = {"red": np.uint8, "green": np.uint8, "blue": np.uint8} | ||
point_types = {**point_types, **color_point_types} | ||
|
||
data["points"] = pd.read_csv( | ||
off, | ||
f, | ||
sep=" ", | ||
header=None, | ||
engine="c", | ||
nrows=n_points, | ||
names=point_names, | ||
dtype=point_types, | ||
index_col=False, | ||
comment="#" | ||
comment="#", | ||
) | ||
|
||
data["mesh"] = pd.read_csv( | ||
filename, | ||
f, | ||
sep=" ", | ||
header=None, | ||
engine="c", | ||
skiprows=(count + n_points), | ||
nrows=n_faces, | ||
usecols=[1, 2, 3], | ||
names=["v1", "v2", "v3"], | ||
comment="#" | ||
comment="#", | ||
) | ||
return data | ||
|
||
return data |