Code for the paper:
A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task.
- Python 2.7
- Theano >= 0.7
- Lasagne 0.2.dev1
-
The two processed RC datasets:
- CNN: http://cs.stanford.edu/~danqi/data/cnn.tar.gz (546M)
- Daily Mail: http://cs.stanford.edu/~danqi/data/dailymail.tar.gz (1.4G)
The original datasets can be downloaded from https://github.com/deepmind/rc-data or http://cs.nyu.edu/~kcho/DMQA/. Our processed ones are just simply concatenation of all data instances and keeping document, question and answer only for our inputs.
-
Word embeddings:
- glove.6B.zip: http://nlp.stanford.edu/data/glove.6B.zip
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32
python main.py --train_file /u/nlp/data/deepmind-qa/cnn/train.txt
--dev_file /u/nlp/data/deepmind-qa/cnn/dev.txt
--embedding_file /u/nlp/data/deepmind-qa/word-embeddings/glove.6B.100d.txt
relabeling
: default is True.hidden_size
: default is 128.bidir
: default is True.num_layers
: default is 1.rnn_type
: default is "gru".att_func
: default is "bilinear".batch_size
: default is 32.num_epoches
: default is 100.eval_iter
: default is 100.dropout_rate
: default is 0.2.optimizer
: default is "sgd".learning_rate
: default is 0.1.grad_clipping
: default is 10.
@inproceedings{chen2016thorough,
title={A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task},
author={Chen, Danqi and Bolton, Jason and Manning, Christopher D.},
booktitle={Association for Computational Linguistics (ACL)},
year={2016}
}
MIT