Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

jsonl: major perf refactor #1553

Merged
merged 2 commits into from
Jan 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@
| [input](/src/cmd/input.rs#L2) | Read CSV data with special commenting, quoting, trimming, line-skipping & non-UTF8 encoding handling rules. Typically used to "normalize" a CSV for further processing with other qsv commands. |
| [join](/src/cmd/join.rs#L2) | Inner, outer, right, cross, anti & semi joins. Automatically creates a simple, in-memory hash index to make it fast. |
| [joinp](/src/cmd/joinp.rs#L2)<br>✨🚀🐻‍❄️ | Inner, outer, cross, anti, semi & asof joins using the [Pola.rs](https://www.pola.rs) engine. Unlike the `join` command, `joinp` can process files larger than RAM, is multi-threaded, has join key validation, pre-join filtering, supports [asof joins](https://pola-rs.github.io/polars/py-polars/html/reference/dataframe/api/polars.DataFrame.join_asof.html) (which is [particularly useful for time series data](https://github.com/jqnatividad/qsv/blob/30cc920d0812a854fcbfedc5db81788a0600c92b/tests/test_joinp.rs#L509-L983)) & its output doesn't have duplicate columns. However, `joinp` doesn't have an --ignore-case option & it doesn't support right outer joins. |
| [jsonl](/src/cmd/jsonl.rs#L2)<br>🔣 | Convert newline-delimited JSON ([JSONL](https://jsonlines.org/)/[NDJSON](http://ndjson.org/)) to CSV. See `tojsonl` command to convert CSV to JSONL.
| [jsonl](/src/cmd/jsonl.rs#L2)<br>🚀🔣 | Convert newline-delimited JSON ([JSONL](https://jsonlines.org/)/[NDJSON](http://ndjson.org/)) to CSV. See `tojsonl` command to convert CSV to JSONL.
| <a name="luau_deeplink"></a><br>[luau](/src/cmd/luau.rs#L2) 👑<br>✨📇🌐🔣 ![CKAN](docs/images/ckan.png) | Create multiple new computed columns, filter rows, compute aggregations and build complex data pipelines by executing a [Luau](https://luau-lang.org) [0.606](https://github.com/Roblox/luau/releases/tag/0.606) expression/script for every row of a CSV file ([sequential mode](https://github.com/jqnatividad/qsv/blob/bb72c4ef369d192d85d8b7cc6e972c1b7df77635/tests/test_luau.rs#L254-L298)), or using [random access](https://www.webopedia.com/definitions/random-access/) with an index ([random access mode](https://github.com/jqnatividad/qsv/blob/bb72c4ef369d192d85d8b7cc6e972c1b7df77635/tests/test_luau.rs#L367-L415)).<br>Can process a single Luau expression or [full-fledged data-wrangling scripts using lookup tables](https://github.com/dathere/qsv-lookup-tables#example) with discrete BEGIN, MAIN and END sections.<br> It is not just another qsv command, it is qsv's [Domain-specific Language](https://en.wikipedia.org/wiki/Domain-specific_language) (DSL) with [numerous qsv-specific helper functions](https://github.com/jqnatividad/qsv/blob/113eee17b97882dc368b2e65fec52b86df09f78b/src/cmd/luau.rs#L1356-L2290) to build production data pipelines. |
| [partition](/src/cmd/partition.rs#L2) | Partition a CSV based on a column value. |
| [pseudo](/src/cmd/pseudo.rs#L2)<br>🔣 | [Pseudonymise](https://en.wikipedia.org/wiki/Pseudonymization) the value of the given column by replacing them with an incremental identifier. |
Expand Down
127 changes: 101 additions & 26 deletions src/cmd/jsonl.rs
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ straightforwardly convert JSON lines to CSV, the process might lose some complex
fields from the input.

Also, it will fail if the JSON documents are not consistent with one another,
as the first JSON line will be use to infer the headers of the CSV output.
as the first JSON line will be used to infer the headers of the CSV output.

For examples, see https://github.com/jqnatividad/qsv/blob/master/tests/test_jsonl.rs.

Expand All @@ -16,6 +16,11 @@ Usage:

jsonl options:
--ignore-errors Skip malformed input lines.
-j, --jobs <arg> The number of jobs to run in parallel.
When not set, the number of jobs is set to the
number of CPUs detected.
-b, --batch <size> The number of rows per batch to load into memory,
before running in parallel. [default: 50000]

Common options:
-h, --help Display this message
Expand All @@ -29,11 +34,15 @@ use std::{
io::{self, BufRead, BufReader},
};

use rayon::{
iter::{IndexedParallelIterator, ParallelIterator},
prelude::IntoParallelRefIterator,
};
use serde::Deserialize;
use serde_json::Value;

use crate::{
config::{Config, Delimiter},
config::{Config, Delimiter, DEFAULT_RDR_BUFFER_CAPACITY},
util, CliResult,
};

Expand All @@ -43,10 +52,11 @@ struct Args {
flag_output: Option<String>,
flag_delimiter: Option<Delimiter>,
flag_ignore_errors: bool,
flag_jobs: Option<usize>,
flag_batch: u32,
}

#[allow(clippy::needless_pass_by_value)]
fn recurse_to_infer_headers(value: &Value, headers: &mut Vec<Vec<String>>, path: Vec<String>) {
fn recurse_to_infer_headers(value: &Value, headers: &mut Vec<Vec<String>>, path: &[String]) {
match value {
Value::Object(map) => {
for (key, value) in map {
Expand All @@ -56,16 +66,16 @@ fn recurse_to_infer_headers(value: &Value, headers: &mut Vec<Vec<String>>, path:
| Value::Number(_)
| Value::String(_)
| Value::Array(_) => {
let mut full_path = path.clone();
let mut full_path = path.to_owned();
full_path.push(key.to_string());

headers.push(full_path);
},
Value::Object(_) => {
let mut new_path = path.clone();
let mut new_path = path.to_owned();
new_path.push(key.to_string());

recurse_to_infer_headers(value, headers, new_path);
recurse_to_infer_headers(value, headers, &new_path);
},
#[allow(unreachable_patterns)]
_ => {},
Expand All @@ -81,7 +91,7 @@ fn recurse_to_infer_headers(value: &Value, headers: &mut Vec<Vec<String>>, path:
fn infer_headers(value: &Value) -> Vec<Vec<String>> {
let mut headers: Vec<Vec<String>> = Vec::new();

recurse_to_infer_headers(value, &mut headers, Vec::new());
recurse_to_infer_headers(value, &mut headers, &Vec::new());

headers
}
Expand All @@ -103,6 +113,7 @@ fn get_value_at_path(value: &Value, path: &[String]) -> Option<Value> {
Some(current.clone())
}

#[inline]
fn json_line_to_csv_record(value: &Value, headers: &[Vec<String>]) -> csv::StringRecord {
let mut record = csv::StringRecord::new();

Expand Down Expand Up @@ -141,31 +152,67 @@ pub fn run(argv: &[&str]) -> CliResult<()> {
.delimiter(args.flag_delimiter)
.writer()?;

let rdr: Box<dyn BufRead> = match args.arg_input {
let mut rdr: Box<dyn BufRead> = match args.arg_input {
None => Box::new(BufReader::new(io::stdin())),
Some(p) => Box::new(BufReader::new(fs::File::open(p)?)),
Some(p) => Box::new(BufReader::with_capacity(
DEFAULT_RDR_BUFFER_CAPACITY,
fs::File::open(p)?,
)),
};

let mut headers: Vec<Vec<String>> = Vec::new();
let mut headers_emitted: bool = false;

for (rowidx, line) in rdr.lines().enumerate() {
let value: Value = match serde_json::from_str(&line?) {
Ok(v) => v,
Err(e) => {
if args.flag_ignore_errors {
continue;
}
let human_idx = rowidx + 1; // not zero based, for readability
return fail_clierror!(
r#"Could not parse line {human_idx} as JSON!: {e}
// amortize memory allocation by reusing record
let mut batch_line = String::new();

// reuse batch buffers
let batchsize: usize = args.flag_batch as usize;
let mut batch = Vec::with_capacity(batchsize);
let mut batch_results = Vec::with_capacity(batchsize);

// set RAYON_NUM_THREADS
util::njobs(args.flag_jobs);

let mut result_idx = 0_u64;

'batch_loop: loop {
for _ in 0..batchsize {
batch_line.clear();
match rdr.read_line(&mut batch_line) {
Ok(0) => {
// EOF
break;
},
Ok(_) => {
batch.push(batch_line.clone());
},
Err(e) => {
if args.flag_ignore_errors {
continue;
}
return fail_clierror!(
r#"Could not read input line!: {e}
Use `--ignore-errors` option to skip malformed input lines.
Use `tojsonl` command to convert _to_ jsonl instead of _from_ jsonl."#,
);
},
};
);
},
}
}

if batch.is_empty() {
break 'batch_loop; // EOF
}

if !headers_emitted {
let value: Value = match serde_json::from_str(&batch[0]) {
Ok(v) => v,
Err(e) => {
return fail_clierror!(
"Could not parse first input line as JSON to infer headers: {e}",
);
},
};
headers = infer_headers(&value);

let headers_formatted = headers.iter().map(|v| v.join(".")).collect::<Vec<String>>();
Expand All @@ -175,9 +222,37 @@ Use `tojsonl` command to convert _to_ jsonl instead of _from_ jsonl."#,
headers_emitted = true;
}

let record = json_line_to_csv_record(&value, &headers);
wtr.write_record(&record)?;
}
// do actual work via rayon
batch
.par_iter()
.map(|json_line| match serde_json::from_str(json_line) {
Ok(v) => Some(json_line_to_csv_record(&v, &headers)),
Err(e) => {
if !args.flag_ignore_errors {
log::error!("serde_json::from_str error: {:#?}", e);
}
None
},
})
.collect_into_vec(&mut batch_results);

// rayon collect() guarantees original order, so we can just append results of each batch
for result_record in &batch_results {
result_idx += 1;
if let Some(record) = result_record {
wtr.write_record(record)?;
} else if !args.flag_ignore_errors {
// there was an error parsing a json line
return fail_clierror!(
r#"Could not parse input line {result_idx} as JSON
Use `--ignore-errors` option to skip malformed input lines.
Use `tojsonl` command to convert _to_ jsonl instead of _from_ jsonl."#,
);
}
}

batch.clear();
} // end batch loop

Ok(wtr.flush()?)
}
Loading