Skip to content

Commit

Permalink
updated configs
Browse files Browse the repository at this point in the history
fixed gradient checkpoint
added TODO
updated README.md
  • Loading branch information
anxiangsir committed Apr 22, 2022
1 parent 7865494 commit d9cb10e
Show file tree
Hide file tree
Showing 18 changed files with 266 additions and 59 deletions.
90 changes: 53 additions & 37 deletions recognition/arcface_torch/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -61,47 +61,63 @@ For **ICCV2021-MFR-ALL** set, TAR is measured on all-to-all 1:1 protocal, with F
globalised multi-racial testset contains 242,143 identities and 1,624,305 images.


> 1. Large Scale Datasets
| Datasets | Backbone | **MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | Training Throughout | log |
|:-----------------|:------------|:------------|:------------|:------------|:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------|
| MS1MV3 | mobileface | 65.76 | 94.44 | 91.85 | ~13000 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_mobileface_lr02/training.log) |
| Glint360K | mobileface | 69.83 | 95.17 | 92.58 | -11000 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_mobileface_lr02_bs4k/training.log) |
| WF42M-PFC-0.2 | mobileface | 73.80 | 95.40 | 92.64 | (16GPUs)~18583 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_mobilefacenet_pfc02_bs8k_16gpus/training.log) |
| MS1MV3 | r100 | 83.23 | 96.88 | 95.31 | ~3400 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_r100_lr02/training.log) |
| Glint360K | r100 | 90.86 | 97.53 | 96.43 | ~5000 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_r100_lr02_bs4k_16gpus/training.log) |
| WF42M-PFC-0.2 | r50(bs4k) | 93.83 | 97.53 | 96.16 | (8 GPUs)~5900 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r50_bs4k_pfc02/training.log) |
| WF42M-PFC-0.2 | r50(bs8k) | 93.96 | 97.46 | 96.12 | (16GPUs)~11000 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r50_lr01_pfc02_bs8k_16gpus/training.log) |
| WF42M-PFC-0.2 | r50(bs4k) | 94.04 | 97.48 | 95.94 | (32GPUs)~17000 | click me |
| WF42M-PFC-0.0018 | r100(bs16k) | 93.08 | 97.51 | 95.88 | (32GPUs)~10000 | click me |
| WF42M-PFC-0.2 | r100(bs4k) | 96.69 | 97.85 | 96.63 | (16GPUs)~5200 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r100_bs4k_pfc02/training.log) |

> 2. VIT For Face Recognition
| Datasets | Backbone | FLOPs | **MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | Training Throughout | log |
|:--------------|:-------------|:------|:------------|:------------|:------------|:--------------------|:---------|
| WF42M-PFC-0.3 | R18(bs4k) | 2.6 | 79.13 | 95.77 | 93.36 | - | click me |
| WF42M-PFC-0.3 | R50(bs4k) | 6.3 | 94.03 | 97.48 | 95.94 | - | click me |
| WF42M-PFC-0.3 | R100(bs4k) | 12.1 | 96.69 | 97.82 | 96.45 | - | click me |
| WF42M-PFC-0.3 | R200(bs4k) | 23.5 | 97.70 | 97.97 | 96.93 | - | click me |
| WF42M-PFC-0.3 | VIT-T(bs24k) | 1.5 | 92.24 | 97.31 | 95.97 | (64GPUs)~35000 | click me |
| WF42M-PFC-0.3 | VIT-S(bs24k) | 5.7 | 95.87 | 97.73 | 96.57 | (64GPUs)~25000 | click me |
| WF42M-PFC-0.3 | VIT-B(bs24k) | 11.4 | 97.42 | 97.90 | 97.04 | (64GPUs)~13800 | click me |
| WF42M-PFC-0.3 | VIT-L(bs24k) | 25.3 | 97.85 | 98.00 | 97.23 | (64GPUs)~9406 | click me |

WF42M means WebFace42M, `PFC-0.3` means negivate class centers sample rate is 0.3.

> 3. Noisy Datasets
#### 1. Training on Single-Host GPU

| Datasets | Backbone | **MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | log |
|:--------------|:--------------------|:------------|:------------|:------------|:------------------------------------------------------------------------------------------------------------------------------------|
| MS1MV2 | mobilefacenet-0.45G | 62.07 | 93.61 | 90.28 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv2_mbf/training.log) |
| MS1MV3 | mobilefacenet-0.45G | 63.78 | 94.23 | 91.33 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_mbf/training.log) |
| Glint360K | mobilefacenet-0.45G | 70.18 | 95.04 | 92.62 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_mbf/training.log) |
| MS1MV2 | r50 | 70.35 | 95.43 | 93.34 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv2_r50/training.log) |
| MS1MV3 | r50 | 79.14 | 96.37 | 94.47 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_r50/training.log) |
| Glint360K | r50 | 86.34 | 97.16 | 95.81 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_r50/training.log) |
| MS1MV2 | r100 | 69.79 | 95.85 | 93.93 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv2_r100/training.log) |
| MS1MV3 | r100 | 81.97 | 96.85 | 95.02 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_r100/training.log) |
| Glint360k | r100 | 89.52 | 97.55 | 96.38 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_r100/training.log) |
| WF42M-PFC-0.2 | R100 | 96.27 | 97.70 | 96.31 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/wf42m_pfc02_r100/training.log) |
| WF42M-PFC-0.2 | ViT-T-1.5G | 92.04 | 97.27 | 95.68 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/wf42m_pfc02_40epoch_8gpu_vit_t/training.log) |

#### 2. Training on Multi-Host GPU

| Datasets | Backbone(bs*gpus) | **MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | Throughout | log |
|:-----------------|:------------------|:------------|:------------|:------------|:-----------|:-------------------------------------------------------------------------------------------------------------------------------------------|
| WF42M-PFC-0.2 | r50(512*8) | 93.83 | 97.53 | 96.16 | ~5900 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r50_bs4k_pfc02/training.log) |
| WF42M-PFC-0.2 | r50(512*16) | 93.96 | 97.46 | 96.12 | ~11000 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r50_lr01_pfc02_bs8k_16gpus/training.log) |
| WF42M-PFC-0.2 | r50(128*32) | 94.04 | 97.48 | 95.94 | ~17000 | click me |
| WF42M-PFC-0.2 | r100(128*16) | 96.28 | 97.80 | 96.57 | ~5200 | click me |
| WF42M-PFC-0.2 | r100(256*16) | 96.69 | 97.85 | 96.63 | ~5200 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r100_bs4k_pfc02/training.log) |
| WF42M-PFC-0.0018 | r100(512*32) | 93.08 | 97.51 | 95.88 | ~10000 | click me |
| WF42M-PFC-0.2 | r100(128*32) | 96.57 | 97.83 | 96.50 | ~9800 | click me |

`r100(128*32)` means backbone is r100, batchsize per gpu is 128, the number of gpus is 32.



#### 3. ViT For Face Recognition

| Datasets | Backbone(bs) | FLOPs | **MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | Throughout | log |
|:--------------|:--------------|:------|:------------|:------------|:------------|:-----------|:-----------------------------------------------------------------------------------------------------------------------------|
| WF42M-PFC-0.3 | r18(128*32) | 2.6 | 79.13 | 95.77 | 93.36 | - | click me |
| WF42M-PFC-0.3 | r50(128*32) | 6.3 | 94.03 | 97.48 | 95.94 | - | click me |
| WF42M-PFC-0.3 | r100(128*32) | 12.1 | 96.69 | 97.82 | 96.45 | - | click me |
| WF42M-PFC-0.3 | r200(128*32) | 23.5 | 97.70 | 97.97 | 96.93 | - | click me |
| WF42M-PFC-0.3 | VIT-T(384*64) | 1.5 | 92.24 | 97.31 | 95.97 | ~35000 | click me |
| WF42M-PFC-0.3 | VIT-S(384*64) | 5.7 | 95.87 | 97.73 | 96.57 | ~25000 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/pfc03_wf42m_vit_s_64gpu/training.log) |
| WF42M-PFC-0.3 | VIT-B(384*64) | 11.4 | 97.42 | 97.90 | 97.04 | ~13800 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/pfc03_wf42m_vit_b_64gpu/training.log) |
| WF42M-PFC-0.3 | VIT-L(384*64) | 25.3 | 97.85 | 98.00 | 97.23 | ~9406 | [click me](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/pfc03_wf42m_vit_l_64gpu/training.log) |

`WF42M` means WebFace42M, `PFC-0.3` means negivate class centers sample rate is 0.3.

#### 4. Noisy Datasets

| Datasets | Backbone | **MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | log |
|:-------------------------|:---------|:------------|:------------|:------------|:---------|
| WF12M-Flip(40%) | R50 | 43.87 | 88.35 | 80.78 | click me |
| WF12M-Flip(40%)-PFC-0.3* | R50 | 80.20 | 96.11 | 93.79 | click me |
| WF12M-Conflict | R50 | 79.93 | 95.30 | 91.56 | click me |
| WF12M-Conflict-PFC-0.3* | R50 | 91.68 | 97.28 | 95.75 | click me |

WF12M means WebFace12M, `+PFC-0.3*` denotes additional abnormal inter-class filtering.
| WF12M-Flip(40%) | r50 | 43.87 | 88.35 | 80.78 | click me |
| WF12M-Flip(40%)-PFC-0.1* | r50 | 80.20 | 96.11 | 93.79 | click me |
| WF12M-Conflict | r50 | 79.93 | 95.30 | 91.56 | click me |
| WF12M-Conflict-PFC-0.3* | r50 | 91.68 | 97.28 | 95.75 | click me |

`WF12M` means WebFace12M, `+PFC-0.1*` denotes additional abnormal inter-class filtering.



Expand Down
6 changes: 3 additions & 3 deletions recognition/arcface_torch/backbones/iresnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ def __init__(self, inplanes, planes, stride=1, downsample=None,
self.downsample = downsample
self.stride = stride

def forard_impl(self, x):
def forward_impl(self, x):
identity = x
out = self.bn1(x)
out = self.conv1(out)
Expand All @@ -59,9 +59,9 @@ def forard_impl(self, x):

def forward(self, x):
if self.training and using_ckpt:
return checkpoint(self.forard_imlp, x)
return checkpoint(self.forward_impl, x)
else:
return self.forard_impl(x)
return self.forward_impl(x)


class IResNet(nn.Module):
Expand Down
1 change: 1 addition & 0 deletions recognition/arcface_torch/configs/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@

config = edict()

# Margin Base Softmax
config.margin_list = (1.0, 0.5, 0.0)
config.network = "r50"
config.resume = False
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,14 +14,14 @@
config.fp16 = True
config.momentum = 0.9
config.weight_decay = 1e-4
config.batch_size = 512
config.lr = 0.4
config.verbose = 5000
config.batch_size = 128
config.lr = 0.1
config.verbose = 2000
config.dali = False

config.rec = "/train_tmp/glint360k"
config.num_classes = 360232
config.num_image = 17091657
config.num_epoch = 20
config.warmup_epoch = 2
config.warmup_epoch = 0
config.val_targets = ['lfw', 'cfp_fp', "agedb_30"]
Original file line number Diff line number Diff line change
Expand Up @@ -13,15 +13,15 @@
config.sample_rate = 1.0
config.fp16 = True
config.momentum = 0.9
config.weight_decay = 5e-4
config.batch_size = 256
config.lr = 0.4
config.verbose = 5000
config.weight_decay = 1e-4
config.batch_size = 128
config.lr = 0.1
config.verbose = 2000
config.dali = False

config.rec = "/train_tmp/glint360k"
config.num_classes = 360232
config.num_image = 17091657
config.num_epoch = 20
config.warmup_epoch = 2
config.warmup_epoch = 0
config.val_targets = ['lfw', 'cfp_fp', "agedb_30"]
27 changes: 27 additions & 0 deletions recognition/arcface_torch/configs/glint360k_r50.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
from easydict import EasyDict as edict

# make training faster
# our RAM is 256G
# mount -t tmpfs -o size=140G tmpfs /train_tmp

config = edict()
config.margin_list = (1.0, 0.0, 0.4)
config.network = "r50"
config.resume = False
config.output = None
config.embedding_size = 512
config.sample_rate = 1.0
config.fp16 = True
config.momentum = 0.9
config.weight_decay = 1e-4
config.batch_size = 128
config.lr = 0.1
config.verbose = 2000
config.dali = False

config.rec = "/train_tmp/glint360k"
config.num_classes = 360232
config.num_image = 17091657
config.num_epoch = 20
config.warmup_epoch = 0
config.val_targets = ['lfw', 'cfp_fp', "agedb_30"]
27 changes: 27 additions & 0 deletions recognition/arcface_torch/configs/ms1mv2_mbf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
from easydict import EasyDict as edict

# make training faster
# our RAM is 256G
# mount -t tmpfs -o size=140G tmpfs /train_tmp

config = edict()
config.margin_list = (1.0, 0.5, 0.0)
config.network = "mbf"
config.resume = False
config.output = None
config.embedding_size = 512
config.sample_rate = 1.0
config.fp16 = True
config.momentum = 0.9
config.weight_decay = 1e-4
config.batch_size = 128
config.lr = 0.1
config.verbose = 2000
config.dali = False

config.rec = "/train_tmp/faces_emore"
config.num_classes = 85742
config.num_image = 5822653
config.num_epoch = 40
config.warmup_epoch = 0
config.val_targets = ['lfw', 'cfp_fp', "agedb_30"]
27 changes: 27 additions & 0 deletions recognition/arcface_torch/configs/ms1mv2_r100.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
from easydict import EasyDict as edict

# make training faster
# our RAM is 256G
# mount -t tmpfs -o size=140G tmpfs /train_tmp

config = edict()
config.margin_list = (1.0, 0.5, 0.0)
config.network = "r100"
config.resume = False
config.output = None
config.embedding_size = 512
config.sample_rate = 1.0
config.fp16 = True
config.momentum = 0.9
config.weight_decay = 1e-4
config.batch_size = 128
config.lr = 0.1
config.verbose = 2000
config.dali = False

config.rec = "/train_tmp/faces_emore"
config.num_classes = 85742
config.num_image = 5822653
config.num_epoch = 20
config.warmup_epoch = 0
config.val_targets = ['lfw', 'cfp_fp', "agedb_30"]
27 changes: 27 additions & 0 deletions recognition/arcface_torch/configs/ms1mv2_r50.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
from easydict import EasyDict as edict

# make training faster
# our RAM is 256G
# mount -t tmpfs -o size=140G tmpfs /train_tmp

config = edict()
config.margin_list = (1.0, 0.5, 0.0)
config.network = "r50"
config.resume = False
config.output = None
config.embedding_size = 512
config.sample_rate = 1.0
config.fp16 = True
config.momentum = 0.9
config.weight_decay = 1e-4
config.batch_size = 128
config.lr = 0.1
config.verbose = 2000
config.dali = False

config.rec = "/train_tmp/faces_emore"
config.num_classes = 85742
config.num_image = 5822653
config.num_epoch = 20
config.warmup_epoch = 0
config.val_targets = ['lfw', 'cfp_fp', "agedb_30"]
Original file line number Diff line number Diff line change
Expand Up @@ -14,14 +14,14 @@
config.fp16 = True
config.momentum = 0.9
config.weight_decay = 1e-4
config.batch_size = 256
config.lr = 0.2
config.verbose = 5000
config.batch_size = 128
config.lr = 0.1
config.verbose = 2000
config.dali = False

config.rec = "/train_tmp/ms1m-retinaface-t1"
config.num_classes = 93431
config.num_image = 5179510
config.num_epoch = 40
config.warmup_epoch = 2
config.warmup_epoch = 0
config.val_targets = ['lfw', 'cfp_fp', "agedb_30"]
4 changes: 2 additions & 2 deletions recognition/arcface_torch/configs/ms1mv3_r100.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,13 @@
config.momentum = 0.9
config.weight_decay = 5e-4
config.batch_size = 128
config.lr = 0.2
config.lr = 0.1
config.verbose = 2000
config.dali = False

config.rec = "/train_tmp/ms1m-retinaface-t1"
config.num_classes = 93431
config.num_image = 5179510
config.num_epoch = 25
config.num_epoch = 20
config.warmup_epoch = 0
config.val_targets = ['lfw', 'cfp_fp', "agedb_30"]
6 changes: 3 additions & 3 deletions recognition/arcface_torch/configs/ms1mv3_r50.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,13 @@
config.momentum = 0.9
config.weight_decay = 5e-4
config.batch_size = 128
config.lr = 0.2
config.lr = 0.1
config.verbose = 2000
config.dali = False

config.rec = "/train_tmp/ms1m-retinaface-t1"
config.num_classes = 93431
config.num_image = 5179510
config.num_epoch = 25
config.warmup_epoch = 2
config.num_epoch = 20
config.warmup_epoch = 0
config.val_targets = ['lfw', 'cfp_fp', "agedb_30"]
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
config.resume = False
config.output = None
config.embedding_size = 512
config.sample_rate = 0.2
config.sample_rate = 0.1
config.interclass_filtering_threshold = 0.4
config.fp16 = True
config.weight_decay = 5e-4
Expand Down
27 changes: 27 additions & 0 deletions recognition/arcface_torch/configs/wf42m_pfc02_r100.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
from easydict import EasyDict as edict

# make training faster
# our RAM is 256G
# mount -t tmpfs -o size=140G tmpfs /train_tmp

config = edict()
config.margin_list = (1.0, 0.0, 0.4)
config.network = "r100"
config.resume = False
config.output = None
config.embedding_size = 512
config.sample_rate = 0.2
config.fp16 = True
config.momentum = 0.9
config.weight_decay = 5e-4
config.batch_size = 128
config.lr = 0.1
config.verbose = 10000
config.dali = False

config.rec = "/train_tmp/WebFace42M"
config.num_classes = 2059906
config.num_image = 42474557
config.num_epoch = 20
config.warmup_epoch = 0
config.val_targets = ['lfw', 'cfp_fp', "agedb_30"]
Loading

0 comments on commit d9cb10e

Please sign in to comment.