Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added Landmark Inference For OpenCV Capture #1385

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
173 changes: 173 additions & 0 deletions alignment/coordinateReg/video_infer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
import time
import cv2
import numpy as np
import mxnet as mx
from skimage import transform as trans
import insightface


def square_crop(im, S):
if im.shape[0] > im.shape[1]:
height = S
width = int(float(im.shape[1]) / im.shape[0] * S)
scale = float(S) / im.shape[0]
else:
width = S
height = int(float(im.shape[0]) / im.shape[1] * S)
scale = float(S) / im.shape[1]
resized_im = cv2.resize(im, (width, height))
det_im = np.zeros((S, S, 3), dtype=np.uint8)
det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im
return det_im, scale


def transform(data, center, output_size, scale, rotation):
scale_ratio = scale
rot = float(rotation) * np.pi / 180.0
#translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
t1 = trans.SimilarityTransform(scale=scale_ratio)
cx = center[0] * scale_ratio
cy = center[1] * scale_ratio
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
t3 = trans.SimilarityTransform(rotation=rot)
t4 = trans.SimilarityTransform(translation=(output_size / 2,
output_size / 2))
t = t1 + t2 + t3 + t4
M = t.params[0:2]
cropped = cv2.warpAffine(data,
M, (output_size, output_size),
borderValue=0.0)
return cropped, M


def trans_points2d(pts, M):
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for i in range(pts.shape[0]):
pt = pts[i]
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
new_pt = np.dot(M, new_pt)
#print('new_pt', new_pt.shape, new_pt)
new_pts[i] = new_pt[0:2]

return new_pts


def trans_points3d(pts, M):
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
#print(scale)
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for i in range(pts.shape[0]):
pt = pts[i]
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
new_pt = np.dot(M, new_pt)
#print('new_pt', new_pt.shape, new_pt)
new_pts[i][0:2] = new_pt[0:2]
new_pts[i][2] = pts[i][2] * scale

return new_pts


def trans_points(pts, M):
if pts.shape[1] == 2:
return trans_points2d(pts, M)
else:
return trans_points3d(pts, M)


class Handler:
def __init__(self, prefix, epoch, im_size=192, det_size=224, ctx_id=0):
print('loading', prefix, epoch)
if ctx_id >= 0:
ctx = mx.gpu(ctx_id)
else:
ctx = mx.cpu()
image_size = (im_size, im_size)
self.detector = insightface.model_zoo.get_model(
'retinaface_mnet025_v2') #can replace with your own face detector
#self.detector = insightface.model_zoo.get_model('retinaface_r50_v1')
self.detector.prepare(ctx_id=ctx_id)
self.det_size = det_size
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
all_layers = sym.get_internals()
sym = all_layers['fc1_output']
self.image_size = image_size
model = mx.mod.Module(symbol=sym, context=ctx, label_names=None)
model.bind(for_training=False,
data_shapes=[('data', (1, 3, image_size[0], image_size[1]))
])
model.set_params(arg_params, aux_params)
self.model = model
self.image_size = image_size

def get(self, img, get_all=False):
out = []
det_im, det_scale = square_crop(img, self.det_size)
bboxes, _ = self.detector.detect(det_im)
if bboxes.shape[0] == 0:
return out
bboxes /= det_scale
if not get_all:
areas = []
for i in range(bboxes.shape[0]):
x = bboxes[i]
area = (x[2] - x[0]) * (x[3] - x[1])
areas.append(area)
m = np.argsort(areas)[-1]
bboxes = bboxes[m:m + 1]
for i in range(bboxes.shape[0]):
bbox = bboxes[i]
input_blob = np.zeros((1, 3) + self.image_size, dtype=np.float32)
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
rotate = 0
_scale = self.image_size[0] * 2 / 3.0 / max(w, h)
rimg, M = transform(img, center, self.image_size[0], _scale,
rotate)
rimg = cv2.cvtColor(rimg, cv2.COLOR_BGR2RGB)
rimg = np.transpose(rimg, (2, 0, 1)) #3*112*112, RGB
input_blob[0] = rimg
data = mx.nd.array(input_blob)
db = mx.io.DataBatch(data=(data, ))
self.model.forward(db, is_train=False)
pred = self.model.get_outputs()[-1].asnumpy()[0]
if pred.shape[0] >= 3000:
pred = pred.reshape((-1, 3))
else:
pred = pred.reshape((-1, 2))
pred[:, 0:2] += 1
pred[:, 0:2] *= (self.image_size[0] // 2)
if pred.shape[1] == 3:
pred[:, 2] *= (self.image_size[0] // 2)

IM = cv2.invertAffineTransform(M)
pred = trans_points(pred, IM)
out.append(pred)
return out


if __name__ == '__main__':
handler = Handler('2d106det', 0, ctx_id=-1, det_size=640)
cap = cv2.VideoCapture(0)
while True:
ret, im = cap.read()
if ret:
tim = im.copy()
t1 = time.perf_counter()
preds = handler.get(im, get_all=True)
t2 = time.perf_counter()
print(f'Prediction Time: {t2 - t1}.')
color = (200, 160, 75)
for pred in preds:
pred = np.round(pred).astype(np.int)
for i in range(pred.shape[0]):
p = tuple(pred[i])
cv2.circle(tim, p, 1, color, 1, cv2.LINE_AA)
cv2.imshow('output', tim)
k = cv2.waitKey(1)
if k & 0XFF == ord("q"):
cap.release()
cv2.destroyAllWindows()
break
else:
cap.release()
cv2.destroyAllWindows()