Originally by Sindre Sorhus for Node, ported by Nicholas Berlette for Deno.
import * as is from "https://deno.land/x/[email protected]/mod.ts";
is("π¦");
// 'string'
is(new Map());
// 'Map'
is.number(6);
// true
Assertions perform the same type checks, but throw an error if the type does not match.
import { assert } from "https://deno.land/x/[email protected]/mod.ts";
assert.string(2);
// => Error: Expected value which is `string`, received value of type `number`.
import { assert } from "https://deno.land/x/[email protected]/mod.ts";
assert.string(foo);
// `foo` is now typed as a `string`.
- Written in TypeScript, for Deno and Deno Deploy
- Extensive use of type guards
- Supports type assertions
- Aware of generic type parameters (use with caution)
- Actively maintained
Attempts to ascertain the type of the value it receives. Accepts only one argument.
is("π¦");
// 'string'
is(new Map());
// 'Map'
Returns: the type of
value
.
All the below methods accept a value and returns a boolean for whether the value is of the desired type.
is.number(6);
// true
is.undefined(true);
// false
Note: Primitives are lowercase and object types are camelCase.
Examples of Primitives
'undefined'
'null'
'string'
'symbol'
'Array'
'Function'
'Object'
Note: It will throw an error if you try to feed it object-wrapped primitives, as that's a bad practice (e.g.
new String('foo')
)
API Methods
is.undefined(value);
is.null(value);
Note: TypeScript users must use
.null_()
because of a TypeScript naming limitation.
is.string(value);
is.number(value);
Note:
is.number(NaN)
returnsfalse
. This intentionally deviates fromtypeof
behavior to increase user-friendliness ofis
type checks.
is.boolean(value);
is.symbol(value);
is.bigint(value);
API Methods
is.array(value, assertion?)
Returns: true if
value
is an array and all of its items match the assertion (if provided).
is.array(value); // Validate `value` is an array.
is.array(value, is.number); // Validate `value` is an array and all of its items are numbers.
is.function(value);
Note: TypeScript users must use
.function_()
because of a TypeScript naming limitation.
is.buffer(value);
is.blob(value);
is.object(value);
Important: Keep in mind that functions are objects too.
is.numericString(value);
Returns:
true
for a string that represents a number satisfyingis.number
, for example,'42'
and'-8.3'
.
Important:
'NaN'
returnsfalse
, but'Infinity'
and'-Infinity'
returntrue
.
is.regExp(value);
is.date(value);
is.error(value);
is.nativePromise(value);
is.promise(value);
Returns:
true
for any object with a.then()
and.catch()
method. Prefer this one over.nativePromise()
as you usually want to allow userland promise implementations too.
is.generator(value);
Returns:
true
for any object that implements its own.next()
and.throw()
methods and has a function definition forSymbol.iterator
.
is.generatorFunction(value);
is.asyncFunction(value);
Returns:
true
for anyasync
function that can be called with theawait
operator.
is.asyncFunction(async () => {});
// true
is.asyncFunction(() => {});
// false
is.asyncGenerator(value);
is.asyncGenerator(
(async function* () {
yield 4;
})(),
);
// true
is.asyncGenerator(
(function* () {
yield 4;
})(),
);
// false
is.asyncGeneratorFunction(value);
is.asyncGeneratorFunction(async function* () {
yield 4;
});
// true
is.asyncGeneratorFunction(function* () {
yield 4;
});
// false
is.boundFunction(value);
Returns:
true
for anybound
function.
is.boundFunction(() => {});
// true
is.boundFunction(function () {}.bind(null));
// true
is.boundFunction(function () {});
// false
is.map(value);
is.set(value);
is.weakMap(value);
is.weakSet(value);
is.weakRef(value);
API Methods
is.int8Array(value);
is.uint8Array(value);
is.uint8ClampedArray(value);
is.int16Array(value);
is.uint16Array(value);
is.int32Array(value);
is.uint32Array(value);
is.float32Array(value);
is.float64Array(value);
is.bigInt64Array(value);
is.bigUint64Array(value);
API Methods
is.arrayBuffer(value);
is.sharedArrayBuffer(value);
is.dataView(value);
is.enumCase(value, enum)
Note: TypeScript-only. Returns
true
ifvalue
is a member ofenum
.
enum Direction {
Ascending = "ascending",
Descending = "descending",
}
is.enumCase("ascending", Direction);
// true
is.enumCase("other", Direction);
// false
API Methods
is.emptyString(value);
Returns:
true
if the value is astring
and the.length
is 0.
is.emptyStringOrWhitespace(value);
Returns:
true
ifis.emptyString(value)
or if it's astring
that is all whitespace.
is.nonEmptyString(value);
Returns:
true
if the value is astring
and the.length
is more than 0.
is.nonEmptyStringAndNotWhitespace(value);
Returns:
true
if the value is astring
that is not empty and not whitespace.
const values = ["property1", "", null, "property2", " ", undefined];
values.filter(is.nonEmptyStringAndNotWhitespace);
// ['property1', 'property2']
is.emptyArray(value);
Returns:
true
if the value is anArray
and the.length
is 0.
is.nonEmptyArray(value);
Returns:
true
if the value is anArray
and the.length
is more than 0.
is.emptyObject(value);
Returns:
true
if the value is anObject
andObject.keys(value).length
is 0.
Note:
Object.keys
returns only own enumerable properties. Hence something like this can happen:
const object1 = {};
Object.defineProperty(object1, "property1", {
value: 42,
writable: true,
enumerable: false,
configurable: true,
});
is.emptyObject(object1);
// true
is.nonEmptyObject(value);
Returns:
true
if the value is anObject
andObject.keys(value).length
is more than 0.
is.emptySet(value);
Returns:
true
if the value is aSet
and the.size
is 0.
is.nonEmptySet(Value);
Returns:
true
if the value is aSet
and the.size
is more than 0.
is.emptyMap(value);
Returns:
true
if the value is aMap
and the.size
is 0.
is.nonEmptyMap(value);
Returns:
true
if the value is aMap
and the.size
is more than 0.
API Methods
is.directInstanceOf(value, class)
Returns:
true
ifvalue
is a direct instance ofclass
.
is.directInstanceOf(new Error(), Error);
// true
class UnicornError extends Error {}
is.directInstanceOf(new UnicornError(), Error);
// false
is.urlInstance(value);
Returns:
true
ifvalue
is an instance of theURL
class.
const url = new URL("https://example.com");
is.urlInstance(url);
// true
is.urlString(value);
Returns:
true
ifvalue
is a URL string.
Note: this only does basic checking using the URL
class
constructor.
const url = "https://example.com";
is.urlString(url);
// true
is.urlString(new URL(url));
// false
is.truthy(value);
Returns:
true
for all values that evaluate to true in a boolean context:
is.truthy("π¦");
// true
is.truthy(undefined);
// false
is.falsy(value);
Returns:
true
ifvalue
is one of:false
,0
,''
,null
,undefined
,NaN
.
is.nan(value);
is.nullOrUndefined(value);
is.primitive(value);
JavaScript primitives are as follows: null
, undefined
, string
, number
,
boolean
, symbol
.
is.integer(value);
is.safeInteger(value);
Returns:
true
ifvalue
is a safe integer.
is.plainObject(value);
An object is plain if it's created by either {}
, new Object()
, or
Object.create(null)
.
is.iterable(value);
is.asyncIterable(value);
is.class(value);
Returns:
true
for instances created by a class.
Note: TypeScript users must use .class_()
because of a TypeScript naming
limitation.
is.typedArray(value);
is.arrayLike(value);
A value
is array-like if it is not a function and has a value.length
that is
a safe integer greater than or equal to 0.
is.arrayLike(document.forms);
// true
function foo() {
is.arrayLike(arguments);
// true
}
foo();
is.inRange(value, range);
Check if value
(number) is in the given range
. The range is an array of two
values, lower bound and upper bound, in no specific order.
is.inRange(3, [0, 5]);
is.inRange(3, [5, 0]);
is.inRange(0, [-2, 2]);
is.inRange(value, upperBound);
Check if value
(number) is in the range of 0
to upperBound
.
is.inRange(3, 10);
is.domElement(value);
Returns:
true
ifvalue
is a DOM Element.
is.nodeStream(value);
Returns:
true
ifvalue
is a Node.js stream.
import fs from "node:fs";
is.nodeStream(fs.createReadStream("unicorn.png"));
// true
is.observable(value);
Returns:
true
ifvalue
is anObservable
.
import { Observable } from "rxjs";
is.observable(new Observable());
// true
is.infinite(value);
Check if value
is Infinity
or -Infinity
.
is.evenInteger(value);
Returns:
true
ifvalue
is an even integer.
is.oddInteger(value);
Returns:
true
ifvalue
is an odd integer.
is.propertyKey(value);
Returns:
true
ifvalue
can be used as an object property key (eitherstring
,number
, orsymbol
).
is.formData(value);
Returns:
true
ifvalue
is an instance of theFormData
class.
const data = new FormData();
is.formData(data);
// true
is.urlSearchParams(value);
Returns:
true
ifvalue
is an instance of theURLSearchParams
class.
const searchParams = new URLSearchParams();
is.urlSearchParams(searchParams);
// true
is.any(predicate | predicate[], ...values)
Using a single predicate
argument, returns true
if any of the input
values
returns true in the predicate
:
is.any(is.string, {}, true, "π¦");
// true
is.any(is.boolean, "denosaurs", [], new Map());
// false
Using an array of predicate[]
, returns true
if any of the input values
returns true for any of the predicates
provided in an array:
is.any([is.string, is.number], {}, true, "π¦");
// true
is.any([is.boolean, is.number], "denosaurs", [], new Map());
// false
is.all(predicate, ...values);
Returns:
true
if all of the inputvalues
returns true in thepredicate
:
is.all(is.object, {}, new Map(), new Set());
// true
is.all(is.string, "π¦", [], "denosaurs");
// false
When using is
together with TypeScript,
type guards
are being used extensively to infer the correct type inside if-else statements.
Examples
import is from "https://deno.land/x/[email protected]/mod.ts";
const padLeft = (value: string, padding: string | number) => {
if (is.number(padding)) {
// `padding` is typed as `number`
return Array(padding + 1).join(" ") + value;
}
if (is.string(padding)) {
// `padding` is typed as `string`
return padding + value;
}
throw new TypeError(
`Expected 'padding' to be of type 'string' or 'number', got '${
is(padding)
}'.`,
);
};
padLeft("π¦", 3);
// ' π¦'
padLeft("π¦", "π");
// 'ππ¦'
The type guards are also available as
type assertions,
which throw an error for unexpected types. It is a convenient one-line version
of the often repetitive "if-not-expected-type-throw"
pattern.
Examples
import { assert } from "https://deno.land/x/[email protected]/mod.ts";
const handleMovieRatingApiResponse = (response: unknown) => {
assert.plainObject(response);
// `response` is now typed as a plain `object` with `unknown` properties.
assert.number(response.rating);
// `response.rating` is now typed as a `number`.
assert.string(response.title);
// `response.title` is now typed as a `string`.
return `${response.title} (${response.rating * 10})`;
};
handleMovieRatingApiResponse({ rating: 0.87, title: "The Matrix" });
// 'The Matrix (8.7)'
// This throws an error.
handleMovieRatingApiResponse({ rating: "π¦" });
More Information
The type guards and type assertions are aware of
generic type parameters,
such as Promise<T>
and Map<Key, Value>
. The default is unknown
for most
cases, since is
cannot check them at runtime. If the generic type is known at
compile-time, either implicitly (inferred) or explicitly (provided), is
propagates the type so it can be used later.
Use generic type parameters with caution. They are only checked by the
TypeScript compiler, and not checked by is
at runtime. This can lead to
unexpected behavior, where the generic type is assumed at compile-time, but
actually is something completely different at runtime. It is best to use
unknown
(default) and type-check the value of the generic type parameter at
runtime with is
or assert
.
Examples
import { assert } from "https://deno.land/x/[email protected]/mod.ts";
async function badNumberAssumption(input: unknown) {
// Bad assumption about the generic type parameter fools the compile-time type system.
assert.promise<number>(input);
// `input` is a `Promise` but only assumed to be `Promise<number>`.
const resolved = await input;
// `resolved` is typed as `number` but was not actually checked at runtime.
// Multiplication will return NaN if the input promise did not actually contain a number.
return 2 * resolved;
}
async function goodNumberAssertion(input: unknown) {
assert.promise(input);
// `input` is typed as `Promise<unknown>`
const resolved = await input;
// `resolved` is typed as `unknown`
assert.number(resolved);
// `resolved` is typed as `number`
// Uses runtime checks so only numbers will reach the multiplication.
return 2 * resolved;
}
badNumberAssumption(Promise.resolve("An unexpected string"));
// NaN
// This correctly throws an error because of the unexpected string value.
goodNumberAssertion(Promise.resolve("An unexpected string"));
Why yet another type checking module?
There are hundreds of type checking modules on npm, unfortunately, I couldn't find any that fit my needs:
- Includes both type methods and ability to get the type
- Types of primitives returned as lowercase and object types as camelcase
- Covers all built-ins
- Unsurprising behavior
- Well-maintained
- Comprehensive test suite
For the ones I found, pick 3 of these.
The most common mistakes I noticed in these modules was using instanceof
for
type checking, forgetting that functions are objects, and omitting symbol
as a
primitive.
Why not just use `instanceof` instead of this package?
instanceof
does not work correctly for all types and it does not work across
realms. Examples of realms are
iframes, windows, web workers, and the vm
module in Node.js.
MIT License. Originally by Sindre Sorhus. Ported by Nicholas Berlette for Deno.