Table of Contents
🇮🇹 Sistema conversazionale basato su Large Language Models (LLMs) affiancati da un sistema di Retrieval-Augmented Generation (RAG), per il supporto al triage per malattie reumatiche. Questa tecnologia è rivolta al medico di base nella fase di triage e di valutazione delle condizioni cliniche del paziente con possibile malattia reumatica, con l'intento di supportare il medico di base nell'identificare i criteri per l'invio a una visita specialistica reumatologica. Il software è realizzato nel contesto del progetto di ricerca DHEAL-COM (Digital Health Solutions in Community Medicine), finanziato dal Ministero della Salute. Consulta la sezione Acknowledgements per maggiori dettagli.
🇬🇧 Conversational system based on Large Language Models (LLMs) combined with a Retrieval-Augmented Generation (RAG) system, designed to support triage for rheumatic diseases. This technology is intended for general practitioners during the triage and assessment phase of patients with potential rheumatic diseases, helping them identify the criteria for referral to a rheumatology specialist. The software is developed as part of the DHEAL-COM (Digital Health Solutions in Community Medicine) research project, funded by the Ministry of Health. See the Acknowledgements section for more details.
Keywords: RAG, NLP, LLM, large language models, gradio, langchain, chatbot, generative AI, triage, decision support system.
- Make sure you have the latest version of pip installed
pip install --upgrade pip
- Install dependencies from requirements
pip install -r --no-cache-dir requirements.txt
- Run the Gradio app
python3 app.py
List of publications involving OrientaMed
- TM Buonocore, E Cardinale, G Sakellariou, R Bellazzi, and L Sacchi - Enhancing RAGs for Rheumatology Triage: Strategies for Optimized Knowledge Retrieval - Prepring (link)
-
Project Link: https://github.com/detsutut/dheal-com-rag-demo
This work is funded by the "Hub Life Science – Digital Health (LSH-DH) PNC-E3-2022-23683267 - DHEAL-COM Project – CUP: F13C22002030001", funded by the Italian Ministry of Health as part of the National Complementary Plan Innovative Health Ecosystem - CUI: PNC-E.3.
This publication reflects only the authors’ view and the Italian Ministry of Health is not responsible for any use that may be made of the information it contains.
Distributed under MIT License. See LICENSE
for more information.