Skip to content

Conversation

@ggreif
Copy link
Contributor

@ggreif ggreif commented Nov 18, 2025

See dfinity/motoko#5018.

TODO:

  • also do this for base!
  • at method
  • get method
  • doctests

https://github.com/dfinity/motoko/pull/5018/files

TODO:
- [ ] also do this for `base`!
- [ ] `index` method
- [ ] test
@github-actions
Copy link

github-actions bot commented Nov 18, 2025

✨ Documentation preview for bda9424:

https://dfinity.github.io/motoko-core/pull/424 (source code)

@github-actions
Copy link

Benchmark Results

bench/ArrayBuilding.bench.mo $({\color{green}-0.19\%})$

Large known-size array building

Compares performance of different data structures for building arrays of known size.

Instructions: ${\color{green}-0.13\%}$
Heap: ${\color{gray}0\%}$
Stable Memory: ${\color{gray}0\%}$
Garbage Collection: ${\color{green}-0.05\%}$

Instructions

1000 100000 1000000
List 542_157 $({\color{green}-1.11\%})$ 47_994_641 $({\color{green}-0.68\%})$ 475_069_697 $({\color{green}-0.65\%})$
Buffer 342_007 $({\color{red}+0.00\%})$ 33_903_437 $({\color{red}+0.00\%})$ 339_003_652 $({\color{red}+0.00\%})$
pure/List 302_137 $({\color{red}+0.00\%})$ 30_003_592 $({\color{red}+0.00\%})$ 300_055_974 $({\color{red}+0.00\%})$
VarArray ?T 180_528 $({\color{red}+0.00\%})$ 17_802_958 $({\color{red}+0.00\%})$ 178_003_173 $({\color{red}+0.00\%})$
VarArray T 160_815 $({\color{red}+0.00\%})$ 15_803_245 $({\color{red}+0.00\%})$ 158_003_460 $({\color{red}+0.00\%})$
Array (baseline) 42_697 $({\color{red}+0.00\%})$ 4_003_127 $({\color{red}+0.00\%})$ 40_003_342 $({\color{red}+0.00\%})$

Heap

1000 100000 1000000
List 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$
Buffer 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$
pure/List 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$
VarArray ?T 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$
VarArray T 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$
Array (baseline) 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$

Garbage Collection

1000 100000 1000000
List 9.96 KiB $({\color{green}-0.97\%})$ 797.46 KiB $({\color{green}-0.01\%})$ 7.67 MiB $({\color{green}-0.00\%})$
Buffer 8.71 KiB $({\color{gray}0\%})$ 782.15 KiB $({\color{gray}0\%})$ 7.63 MiB $({\color{gray}0\%})$
pure/List 19.95 KiB $({\color{gray}0\%})$ 1.91 MiB $({\color{gray}0\%})$ 19.07 MiB $({\color{gray}0\%})$
VarArray ?T 8.24 KiB $({\color{gray}0\%})$ 781.68 KiB $({\color{gray}0\%})$ 7.63 MiB $({\color{gray}0\%})$
VarArray T 8.23 KiB $({\color{gray}0\%})$ 781.67 KiB $({\color{gray}0\%})$ 7.63 MiB $({\color{gray}0\%})$
Array (baseline) 4.3 KiB $({\color{gray}0\%})$ 391.02 KiB $({\color{gray}0\%})$ 3.82 MiB $({\color{gray}0\%})$
bench/FromIters.bench.mo $({\color{gray}0\%})$

Benchmarking the fromIter functions

Columns describe the number of elements in the input iter.

Instructions: ${\color{gray}0\%}$
Heap: ${\color{gray}0\%}$
Stable Memory: ${\color{gray}0\%}$
Garbage Collection: ${\color{gray}0\%}$

Instructions

100 10_000 100_000
Array.fromIter 48_764 $({\color{gray}0\%})$ 4_712_025 $({\color{gray}0\%})$ 47_103_135 $({\color{gray}0\%})$
List.fromIter 31_698 $({\color{gray}0\%})$ 3_061_541 $({\color{gray}0\%})$ 30_603_553 $({\color{gray}0\%})$
List.fromIter . Iter.reverse 50_297 $({\color{gray}0\%})$ 4_832_563 $({\color{gray}0\%})$ 48_305_477 $({\color{gray}0\%})$

Heap

100 10_000 100_000
Array.fromIter 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$
List.fromIter 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$
List.fromIter . Iter.reverse 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$

Garbage Collection

100 10_000 100_000
Array.fromIter 2.76 KiB $({\color{gray}0\%})$ 234.79 KiB $({\color{gray}0\%})$ 2.29 MiB $({\color{gray}0\%})$
List.fromIter 3.51 KiB $({\color{gray}0\%})$ 312.88 KiB $({\color{gray}0\%})$ 3.05 MiB $({\color{gray}0\%})$
List.fromIter . Iter.reverse 5.11 KiB $({\color{gray}0\%})$ 469.17 KiB $({\color{gray}0\%})$ 4.58 MiB $({\color{gray}0\%})$
bench/ListBufferNewArray.bench.mo $({\color{green}-6.13\%})$

List vs. Buffer for creating known-size arrays

Performance comparison between List and Buffer for creating a new array.

Instructions: ${\color{green}-1.94\%}$
Heap: ${\color{gray}0\%}$
Stable Memory: ${\color{gray}0\%}$
Garbage Collection: ${\color{green}-4.19\%}$

Instructions

0 (baseline) 1 5 10 100 (for loop)
List 1_367 $({\color{green}-11.64\%})$ 2_687 $({\color{green}-7.85\%})$ 8_667 $({\color{green}-4.19\%})$ 13_462 $({\color{green}-3.48\%})$ 73_164 $({\color{green}-1.88\%})$
pure/List 1_247 $({\color{gray}0\%})$ 1_355 $({\color{gray}0\%})$ 2_439 $({\color{gray}0\%})$ 3_801 $({\color{gray}0\%})$ 31_868 $({\color{gray}0\%})$
Buffer 2_119 $({\color{gray}0\%})$ 2_271 $({\color{gray}0\%})$ 3_518 $({\color{gray}0\%})$ 5_085 $({\color{gray}0\%})$ 36_640 $({\color{gray}0\%})$

Heap

0 (baseline) 1 5 10 100 (for loop)
List 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$
pure/List 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$
Buffer 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$

Garbage Collection

0 (baseline) 1 5 10 100 (for loop)
List 476 B $({\color{green}-17.36\%})$ 516 B $({\color{green}-16.23\%})$ 676 B $({\color{green}-12.89\%})$ 784 B $({\color{green}-11.31\%})$ 1.84 KiB $({\color{green}-5.05\%})$
pure/List 360 B $({\color{gray}0\%})$ 380 B $({\color{gray}0\%})$ 460 B $({\color{gray}0\%})$ 560 B $({\color{gray}0\%})$ 2.3 KiB $({\color{gray}0\%})$
Buffer 856 B $({\color{gray}0\%})$ 864 B $({\color{gray}0\%})$ 896 B $({\color{gray}0\%})$ 936 B $({\color{gray}0\%})$ 1.62 KiB $({\color{gray}0\%})$
bench/PriorityQueues.bench.mo $({\color{green}-2.68\%})$

Different priority queue implementations

_Compare the performance of the following priority queue implementations:

  • PriorityQueue: Binary heap implementation over List.
  • PriorityQueueSet: Wrapper over Set<(T, Nat)>._

Instructions: ${\color{green}-2.70\%}$
Heap: ${\color{gray}0\%}$
Stable Memory: ${\color{gray}0\%}$
Garbage Collection: ${\color{red}+0.02\%}$

Instructions

A) PriorityQueue B) PriorityQueueSet
1.) 100000 operations (push:pop = 1:1) 568_913_057 $({\color{green}-4.79\%})$ 522_729_861 $({\color{gray}0\%})$
2.) 100000 operations (push:pop = 2:1) 707_495_424 $({\color{green}-4.77\%})$ 809_693_415 $({\color{gray}0\%})$
3.) 100000 operations (push:pop = 10:1) 336_409_578 $({\color{green}-6.01\%})$ 873_181_028 $({\color{gray}0\%})$
4.) 100000 operations (only push) 176_982_954 $({\color{green}-8.02\%})$ 886_824_792 $({\color{gray}0\%})$
5.) 50000 pushes, then 50000 pops 745_226_615 $({\color{green}-4.04\%})$ 961_776_534 $({\color{gray}0\%})$
6.) 50000 pushes, then 25000 "pop;push"es 504_254_228 $({\color{green}-4.76\%})$ 922_137_111 $({\color{gray}0\%})$

Heap

A) PriorityQueue B) PriorityQueueSet
1.) 100000 operations (push:pop = 1:1) 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$
2.) 100000 operations (push:pop = 2:1) 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$
3.) 100000 operations (push:pop = 10:1) 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$
4.) 100000 operations (only push) 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$
5.) 50000 pushes, then 50000 pops 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$
6.) 50000 pushes, then 25000 "pop;push"es 272 B $({\color{gray}0\%})$ 272 B $({\color{gray}0\%})$

Garbage Collection

A) PriorityQueue B) PriorityQueueSet
1.) 100000 operations (push:pop = 1:1) 15.07 MiB $({\color{red}+0.24\%})$ 17.43 MiB $({\color{gray}0\%})$
2.) 100000 operations (push:pop = 2:1) 19.73 MiB $({\color{gray}0\%})$ 19.32 MiB $({\color{gray}0\%})$
3.) 100000 operations (push:pop = 10:1) 8.67 MiB $({\color{gray}0\%})$ 12.64 MiB $({\color{gray}0\%})$
4.) 100000 operations (only push) 3.87 MiB $({\color{gray}0\%})$ 9.96 MiB $({\color{gray}0\%})$
5.) 50000 pushes, then 50000 pops 22.03 MiB $({\color{red}+0.02\%})$ 26.2 MiB $({\color{gray}0\%})$
6.) 50000 pushes, then 25000 "pop;push"es 14.22 MiB $({\color{gray}0\%})$ 18.44 MiB $({\color{gray}0\%})$
bench/PureListStackSafety.bench.mo $({\color{gray}0\%})$

List Stack safety

Check stack-safety of the following pure/List-related functions.

Instructions: ${\color{gray}0\%}$
Heap: ${\color{gray}0\%}$
Stable Memory: ${\color{gray}0\%}$
Garbage Collection: ${\color{gray}0\%}$

Instructions

pure/List.split 24_602_524 $({\color{gray}0\%})$
pure/List.all 7_901_014 $({\color{gray}0\%})$
pure/List.any 8_001_390 $({\color{gray}0\%})$
pure/List.map 23_103_767 $({\color{gray}0\%})$
pure/List.filter 21_104_188 $({\color{gray}0\%})$
pure/List.filterMap 27_404_742 $({\color{gray}0\%})$
pure/List.partition 21_304_994 $({\color{gray}0\%})$
pure/List.join 33_105_326 $({\color{gray}0\%})$
pure/List.flatten 24_805_667 $({\color{gray}0\%})$
pure/List.take 24_605_664 $({\color{gray}0\%})$
pure/List.drop 9_904_119 $({\color{gray}0\%})$
pure/List.foldRight 19_105_768 $({\color{gray}0\%})$
pure/List.merge 31_808_584 $({\color{gray}0\%})$
pure/List.chunks 51_510_344 $({\color{gray}0\%})$
pure/Queue 142_662_505 $({\color{gray}0\%})$

Heap

pure/List.split 272 B $({\color{gray}0\%})$
pure/List.all 272 B $({\color{gray}0\%})$
pure/List.any 272 B $({\color{gray}0\%})$
pure/List.map 272 B $({\color{gray}0\%})$
pure/List.filter 272 B $({\color{gray}0\%})$
pure/List.filterMap 272 B $({\color{gray}0\%})$
pure/List.partition 272 B $({\color{gray}0\%})$
pure/List.join 272 B $({\color{gray}0\%})$
pure/List.flatten 272 B $({\color{gray}0\%})$
pure/List.take 272 B $({\color{gray}0\%})$
pure/List.drop 272 B $({\color{gray}0\%})$
pure/List.foldRight 272 B $({\color{gray}0\%})$
pure/List.merge 272 B $({\color{gray}0\%})$
pure/List.chunks 272 B $({\color{gray}0\%})$
pure/Queue 272 B $({\color{gray}0\%})$

Garbage Collection

pure/List.split 3.05 MiB $({\color{gray}0\%})$
pure/List.all 328 B $({\color{gray}0\%})$
pure/List.any 328 B $({\color{gray}0\%})$
pure/List.map 3.05 MiB $({\color{gray}0\%})$
pure/List.filter 3.05 MiB $({\color{gray}0\%})$
pure/List.filterMap 3.05 MiB $({\color{gray}0\%})$
pure/List.partition 3.05 MiB $({\color{gray}0\%})$
pure/List.join 3.05 MiB $({\color{gray}0\%})$
pure/List.flatten 3.05 MiB $({\color{gray}0\%})$
pure/List.take 3.05 MiB $({\color{gray}0\%})$
pure/List.drop 328 B $({\color{gray}0\%})$
pure/List.foldRight 1.53 MiB $({\color{gray}0\%})$
pure/List.merge 4.58 MiB $({\color{gray}0\%})$
pure/List.chunks 7.63 MiB $({\color{gray}0\%})$
pure/Queue 18.31 MiB $({\color{gray}0\%})$
bench/Queues.bench.mo $({\color{gray}0\%})$

Different queue implementations

Compare the performance of the following queue implementations:

  • pure/Queue: The default immutable double-ended queue implementation.
    • Pros: Good amortized performance, meaning that the average cost of operations is low O(1).
    • Cons: In worst case, an operation can take O(size) time rebuilding the queue as demonstrated in the Pop front 2 elements scenario.
  • pure/RealTimeQueue
    • Pros: Every operation is guaranteed to take at most O(1) time and space.
    • Cons: Poor amortized performance: Instruction cost is on average 3x for pop and 8x for push compared to pure/Queue.
  • mutable Queue
    • Pros: Also O(1) guarantees with a lower constant factor than pure/RealTimeQueue. Amortized performance is comparable to pure/Queue.
    • Cons: It is mutable and cannot be used in shared types (not shareable).

Instructions: ${\color{gray}0\%}$
Heap: ${\color{gray}0\%}$
Stable Memory: ${\color{gray}0\%}$
Garbage Collection: ${\color{gray}0\%}$

Instructions

pure/Queue pure/RealTimeQueue mutable Queue
Initialize with 2 elements 3_092 $({\color{gray}0\%})$ 2_304 $({\color{gray}0\%})$ 3_040 $({\color{gray}0\%})$
Push 500 elements 90_713 $({\color{gray}0\%})$ 744_219 $({\color{gray}0\%})$ 219_284 $({\color{gray}0\%})$
Pop front 2 elements 86_966 $({\color{gray}0\%})$ 4_446 $({\color{gray}0\%})$ 3_847 $({\color{gray}0\%})$
Pop 150 front&back 92_095 $({\color{gray}0\%})$ 304_908 $({\color{gray}0\%})$ 124_581 $({\color{gray}0\%})$

Heap

pure/Queue pure/RealTimeQueue mutable Queue
Initialize with 2 elements 324 B $({\color{gray}0\%})$ 300 B $({\color{gray}0\%})$ 352 B $({\color{gray}0\%})$
Push 500 elements 8.08 KiB $({\color{gray}0\%})$ 8.17 KiB $({\color{gray}0\%})$ 19.8 KiB $({\color{gray}0\%})$
Pop front 2 elements 240 B $({\color{gray}0\%})$ 240 B $({\color{gray}0\%})$ 192 B $({\color{gray}0\%})$
Pop 150 front&back -4.42 KiB $({\color{gray}0\%})$ -492 B $({\color{gray}0\%})$ -11.45 KiB $({\color{gray}0\%})$

Garbage Collection

pure/Queue pure/RealTimeQueue mutable Queue
Initialize with 2 elements 508 B $({\color{gray}0\%})$ 444 B $({\color{gray}0\%})$ 456 B $({\color{gray}0\%})$
Push 500 elements 10.1 KiB $({\color{gray}0\%})$ 137.84 KiB $({\color{gray}0\%})$ 344 B $({\color{gray}0\%})$
Pop front 2 elements 12.19 KiB $({\color{gray}0\%})$ 528 B $({\color{gray}0\%})$ 424 B $({\color{gray}0\%})$
Pop 150 front&back 15.61 KiB $({\color{gray}0\%})$ 49.66 KiB $({\color{gray}0\%})$ 12.1 KiB $({\color{gray}0\%})$

Note: Renamed benchmarks cannot be compared. Refer to the current baseline for manual comparison.

@rvanasa
Copy link
Collaborator

rvanasa commented Nov 18, 2025

I think we should use the same pattern as established in List, i.e. a get function which returns an optional and an at function which traps outside of the index range.

@ggreif ggreif self-assigned this Nov 18, 2025
@ggreif ggreif added the enhancement New feature or request label Nov 18, 2025
@ggreif ggreif marked this pull request as ready for review November 18, 2025 22:19
@ggreif ggreif requested a review from a team as a code owner November 18, 2025 22:19
/// ```
///
/// Runtime: `O(1)`
public func at(blob : Blob, index : Nat) : Nat8 = blob.get index;
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Realizing this might be confusing with contextual dot notation...

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oh, you mean the missing parens?

Copy link
Collaborator

@rvanasa rvanasa Nov 19, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thinking of the discrepancy where blob.get(i) returns a Nat8 whereas Blob.get(blob, i) would return an optional ?Nat8.

Not sure if there's much we can do about this aside from a breaking change to the compiler or using a different convention for the Blob module compared to List (which might confuse LLMs and humans).

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oh, I get it now. But the same situation probably for Text if that provides indexing at all. That wouldn't be O(1), though.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

enhancement New feature or request

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants