Skip to content

dhruva-sundararajan/hadoop_mapreduce

Repository files navigation

Implementation of Hadoop Mapreduce on Local Text files

Installing the Library

pip install hadoop_mapreduce

Classes available in this Library

  1. MapReduce_Maximum - Find maximum values of the keys available
  2. MapReduce_Minimum - Find minimum values of the keys available

MapReduce_Maximum

Importing

from hadoop_mapreduce import MapReduce_Maximum

Calling the class

data = MapReduce_Maximum(<path to text file>, <path to text meta file>, <path to output file>)

text file should contain records of the data. Example:

Hola,2,3,4
Hello,6,7,8
Hi,10,11,12
Hello,1,3,4
Hi,1,5,3
Hola,1,10,20

meta file should contain the column names of the file. Example:

A,B,C,D

output file will be created at the end of mapreduce implementation

Record Reader

Code:

data.record_reader()

Output:

[{'A': 'Hola', 'B': 2.0, 'C': 3.0, 'D': 4.0},
 {'A': 'Hello', 'B': 6.0, 'C': 7.0, 'D': 8.0},
 {'A': 'Hi', 'B': 10.0, 'C': 11.0, 'D': 12.0},
 {'A': 'Hello', 'B': 1.0, 'C': 3.0, 'D': 4.0},
 {'A': 'Hi', 'B': 1.0, 'C': 5.0, 'D': 3.0},
 {'A': 'Hola', 'B': 1.0, 'C': 10.0, 'D': 20.0}]

Mapper

Code:

data.mapper()

Output:

[('Hola', 4.0),
 ('Hello', 8.0),
 ('Hi', 12.0),
 ('Hello', 4.0),
 ('Hi', 5.0),
 ('Hola', 20.0)]

Sorter & Shuffler

Code:

data.sorter()

Output:

[('Hello', 8.0),
 ('Hello', 4.0),
 ('Hola', 4.0),
 ('Hola', 20.0),
 ('Hi', 12.0),
 ('Hi', 5.0)]

Reducer

Code:

data.reducer()

Output:

[('Hello', 8.0), ('Hola', 20.0), ('Hi', 12.0)]

Record Writer

Code:

data.record_writer()

Output:

'File <path to output file> written successfully'

output file has key and highest value of the key. Example:

Hello 8.0
Hola 20.0
Hi 12.0

Mapreduce_Minimum

Calling the class

data = MapReduce_WordCount(<path to text file>, <path to output file>)

text file should contain records of the data. Example:

Hola,2,3,4
Hello,6,7,8
Hi,10,11,12
Hello,1,3,4
Hi,1,5,3
Hola,1,10,20

meta file should contain the column names of the file. Example:

A,B,C,D

output file will be created at the end of mapreduce implementation

Record Reader

Code:

data.record_reader()

Output:

[{'A': 'Hola', 'B': 2.0, 'C': 3.0, 'D': 4.0},
 {'A': 'Hello', 'B': 6.0, 'C': 7.0, 'D': 8.0},
 {'A': 'Hi', 'B': 10.0, 'C': 11.0, 'D': 12.0},
 {'A': 'Hello', 'B': 1.0, 'C': 3.0, 'D': 4.0},
 {'A': 'Hi', 'B': 1.0, 'C': 5.0, 'D': 3.0},
 {'A': 'Hola', 'B': 1.0, 'C': 10.0, 'D': 20.0}]

Mapper

Code:

data.mapper()

Output:

[('Hola', 4.0),
 ('Hello', 8.0),
 ('Hi', 12.0),
 ('Hello', 4.0),
 ('Hi', 5.0),
 ('Hola', 20.0)]

Sorter & Shuffler

Code:

data.sorter()

Output:

[('Hello', 8.0),
 ('Hello', 4.0),
 ('Hola', 4.0),
 ('Hola', 20.0),
 ('Hi', 12.0),
 ('Hi', 5.0)]

Reducer

Code:

data.reducer()

Output:

[('Hello', 1.0), ('Hola', 1.0), ('Hi', 1.0)]

Record Writer

Code:

data.record_writer()

Output:

'File <path to output file> written successfully'

output file has key and lowesr value of the key. Example:

Hello 1.0
Hola 1.0
Hi 1.0

MapReduce_WordCount

Importing

from hadoop_mapreduce import MapReduce_Minimum

Calling the class

data = MapReduce_Minimum(<path to text file>, <path to text meta file>, <path to output file>)

text file should contain records of the data. Example:

hello wassup. how are you? hello man.

output file will be created at the end of mapreduce implementation

Record Reader

Code:

data.record_reader()

Output:

['hello', 'wassup', 'how', 'are', 'you', 'hello', 'man']

Mapper

Code:

data.mapper()

Output:

[{'hello': 1},
 {'wassup': 1},
 {'how': 1},
 {'are': 1},
 {'you': 1},
 {'hello': 1},
 {'man': 1}]

Sorter & Shuffler

Code:

data.sorter()

Output:

[{'are': 1},
 {'hello': 1},
 {'hello': 1},
 {'how': 1},
 {'man': 1},
 {'wassup': 1},
 {'you': 1}]

Reducer

Code:

data.reducer()

Output:

[('are', 1), ('hello', 2), ('how', 1), ('man', 1), ('wassup', 1), ('you', 1)]

Record Writer

Code:

data.record_writer()

Output:

'File <path to output file> written successfully'

output file word and number of appearences. Example:

are 1
hello 2
how 1
man 1
wassup 1
you 1

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published