Skip to content

Commit

Permalink
P30 Electric Lessons
Browse files Browse the repository at this point in the history
  • Loading branch information
dmaccarthy committed Sep 17, 2024
1 parent 3e085f2 commit 2fd4a8a
Show file tree
Hide file tree
Showing 14 changed files with 226 additions and 63 deletions.
61 changes: 42 additions & 19 deletions docs/p30/elec/Efield.htm
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
<section class="Post" data-icon="slides">
<h2 class="Collapse">Lesson Notes<span data-print="LessonNotes"></span></h2><div class="Collapse Expand">
<h2 class="Collapse">Lesson Notes<span data-print="LessonNotes"></span></h2><div class="Collapse">
<div id="LessonNotes">

<section class="Slide Center">
Expand Down Expand Up @@ -63,16 +63,37 @@ <h1 id="Title">Electric Fields</h1>

<section id="ex1" class="Slide"><h3>Example</h3>
<p class="Blue">Sources of +5.00 nC and –3.00 nC are separated by 12.0 cm. Calculate the electric field at: (a) the midpoint, and (b) a point 6.00 cm from the positive charge in a <em>perpendicular</em> direction.</p>
<p class="Center"><svg data-js="p30/elec/img/Efield#ex1"></svg></p>
<p data-cue="+"><a target="Ex1" href="./?{%22scaleExp%22:3,%22symbol%22:%22E%22,%22square%22:[1,0],%22corner%22:[-9,-4],%22vectors%22:[[0,12486],{%22mag%22:1498.3,%22dir%22:-26.565}],%22unit%22:%22N/C%22}#p20/vec2d/vec2d">Vector Diagram</a></p>
<p class="Center"><svg class="s18" data-js="p30/elec/img/Efield#ex1"></svg></p>
<p data-cue="+">Calculate the electric field due to the positive charge at a separation of 6.00 cm:</p>
<p data-cue="+" class="TeX">|\vec{\bf E}_1| = \left|\frac{kq_1}{r_1^2}\right| = \rm \frac{8.99\times 10^9 \frac{N\cdot m^2}{C^2}\cdot 5.00\times 10^{-9}\ C}{(0.0600\ m)^2} = 12486\ N/C</p>
<p data-cue="+">Calculate the electric field due to the negative charge at a separation of 6.00 cm:</p>
<p data-cue="+" class="TeX">|\vec{\bf E}_2| = \left|\frac{kq_2}{r_2^2}\right| = \rm \frac{8.99\times 10^9 \frac{N\cdot m^2}{C^2}\cdot 3.00\times 10^{-9}\ C}{(0.0600\ m)^2} = 7492\ N/C</p>
<div data-cue="+">
<p>Since both fields are in the <i>x</i>-direction, the net electric field is:</p>
<p class="TeX">\vec{\bf E} = \vec{\bf E}_1 + \vec{\bf E}_2 = \rm 2.00\times 10^4\ N/C\ [0.00^\circ]</p>
</div>
<p data-cue="+">For the second point, <span class="TeX">\vec{\bf E}_1</span> still has a magnitude of 12486 N/C because the point is still 6.00 cm from the positive charge.</p>
<p data-cue="+">Before we can calculate <span class="TeX">\vec{\bf E}_2</span>, we need to solve the right-triangle to find the separation and direction from the negative charge:</p>
<p data-cue="+" class="TeX">r_2 = \rm \sqrt{(12.0\ cm)^2 + (6.00\ cm)^2} = 13.416\ cm</p>
<p data-cue="+" class="TeX">\theta = \rm \tan^{-1} \frac{6.00\ cm}{12.0\ cm} = 26.565^\circ</p>
<p data-cue="+" class="TeX">|\vec{\bf E}_2| = \left|\frac{kq_2}{r_2^2}\right| = \rm \frac{8.99\times 10^9 \frac{N\cdot m^2}{C^2}\cdot 3.00\times 10^{-9}\ C}{(0.13416\ m)^2} = 1498.3\ N/C</p>
<p data-cue="+">When converting to Cartesian form, take <span class="TeX">\theta</span> as negative since the direction of <span class="TeX">\vec{\bf E}_2</span> is clockwise from the <i>x</i>-axis:</p>
<p data-cue="+" class="TeX">\vec{\bf E}_{2x} = \rm 1498.3\ N/C \cdot \cos(-26.565^\circ) = +1340\ N/C</p>
<p data-cue="+" class="TeX">\vec{\bf E}_{2y} = \rm 1498.3\ N/C \cdot \sin(-26.565^\circ) = -670.1\ N/C</p>
<div data-cue="+">
<p>Now calculate the net field:</p>
<p class="TeX">\begin{align}\vec{\bf E} &= \vec{\bf E}_1 + \vec{\bf E}_2
\\[8pt] &= \rm {(0,\ +12486)\ N/C + (+1340,\ -670.1)\ N/C}
\\[8pt] &= \rm {(+1340,\ +11816)\ N/C}
\end{align}</p>
<p><a target="Ex1" href="./?{%22scaleExp%22:3,%22symbol%22:%22E%22,%22square%22:[1,0],%22corner%22:[-9,-4],%22vectors%22:[[0,12486],{%22mag%22:1498.3,%22dir%22:-26.565}],%22unit%22:%22N/C%22}#p20/vec2d/vec2d">Vector Diagram</a></p>
</div>
</section>

<section id="app" class="Slide"><h3>Applications of Electric Fields</h3>
<p>A <em class="Defn">parallel plate capacitor</em> is used to generate a (nearly) uniform electric field.</p>
<p class="Center"><a href="https://commons.wikimedia.org/wiki/File:VFPt_capacitor-square-plate.svg"><img class="w24" data-aspect="4/3" alt="Parallel Plates" src="https://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/VFPt_capacitor-square-plate.svg/800px-VFPt_capacitor-square-plate.svg.png"/></a></p>
<ul data-cue="+">
<li>The field is non-uniform near the edeges (“edge effects”).</li>
</ul>
<ul data-cue="+"><li>The field is non-uniform near the edeges (“edge effects”).</li></ul>
<p data-cue="+">An <em class="Defn">electrical discharge</em> (e.g. lightning) occurs when the field becomes strong enough to ionize air molecules.</p>
<p data-cue="+">A conductor placed in an electric field will become polarized in such a way that the net electric field inside the conductor will be zero.</p>
<ul data-cue="+">
Expand All @@ -82,19 +103,21 @@ <h1 id="Title">Electric Fields</h1>

</div></div></section>

<section class="Post" data-answers="1" data-icon="correct">
<h2 class="Collapse">Practice<span data-print="Practice"></span></h2><div class="Collapse">
<div id="Practice">
<ol>
</ol>
</div></div></section>
<section class="Post" data-icon="link.svg">
<h2 class="Collapse">Visualization Links</h2><div class="Collapse">
<p class="BtnGrid">
<button data-icon="phet" data-open="https://phet.colorado.edu/sims/html/charges-and-fields/latest/charges-and-fields_en.html">PhET Applet</button>
<button data-icon="link.svg" data-open="https://falstad.com/vector2de/vector2de.html?f=InverseSquaredRadial&fc=Floor%3A%20field%20magnitude&fl=Overlay%3A%20field%20lines&d=partsvel&m=Mouse%20%3D%20Adjust%20Angle&st=1&pc=500&ft=true&rx=63&ry=0&rz=0&zm=1.2">Field Visualization (Falstad)</button>
<button data-icon="desmos" data-open="https://www.desmos.com/calculator/br0ig8pci1">Desmos Applet</button>
</p>
</div></section>

<section class="Post" data-answers="1" data-icon="correct">
<h2 class="Collapse">Review<span data-print="Review"></h2><div class="Collapse">
<div id="Review">
<ol>
</ol>
</div></div></section>
<section class="Post" data-show=""2024.9.24.10"" data-icon="gdrv">
<h2 class="Collapse">Practice &amp; Review</h2><div class="Collapse">
<p class="BtnGrid">
<button data-icon="gdrv" data-gdrv="1GoddXPXgkrUBvCXcD7qmUorE5MREf0HbZYsPrROQbaY">Answer Key</button>
</p>
</div></section>

<script type="text/javascript">

Expand All @@ -104,7 +127,7 @@ <h2 class="Collapse">Review<span data-print="Review"></h2><div class="Collapse">
num: "11.1",
up: "p30/units/B",
prev: "p30/elec/coulomb",
next: "p30/elec/helix",
next: "p30/elec/motion",
}

</script>
23 changes: 14 additions & 9 deletions docs/p30/elec/coulomb.htm
Original file line number Diff line number Diff line change
Expand Up @@ -46,17 +46,22 @@ <h2 class="Collapse">Simulation</h2><div class="Collapse">
svg.circle(2.4, p1, g).css({fill: "red", stroke: "black"});
svg.circle(3.4, p2, g).css({fill: "#B0B0B0", stroke: "black"});
svg.blue = svg.circle(2.4, vec2d(40, -60)).css({fill: "#0065FE", stroke: "black"});
svg.blue.dragging = false;
// svg.blue.dragging = false;

// Event handlers for mouse actions
svg.$.on("mouseup", () => {svg.blue.dragging = false});
svg.$.on("mousemove", (ev) => {svg.mouseTheta = svg.eventCoords(ev).coords.dir()});
svg.blue.$.on("mousedown", () => {svg.blue.dragging = true; return false});

svg.blue.beforeupdate = function() {
// Drag the blue sphere
if (this.dragging) this.position = vec2d(40, this.svg.mouseTheta);
}
// svg.$.on("mouseup", () => {svg.blue.dragging = false});
// svg.$.on("mousemove", (ev) => {svg.mouseTheta = svg.eventCoords(ev).coords.dir()});
// svg.blue.$.on("mousedown", () => {svg.blue.dragging = true; return false});

svg.$.on("click", (ev) => {
let theta = svg.eventCoords(ev).coords.dir();
svg.blue.position = vec2d(40, theta);
});

// svg.blue.beforeupdate = function() {
// // Drag the blue sphere
// if (this.dragging) this.position = vec2d(40, this.svg.mouseTheta);
// }

g.beforeupdate = function() {
// Calculate angular speed of torsion balance
Expand Down
13 changes: 9 additions & 4 deletions docs/p30/elec/img/Efield.js
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ ex1: (sel) => {
let g = svg.group();
let tog = [
svg.circle(0.2, [6, 0], g).$,
svg.poly([[0, 0], [12, 0], [0, 6]], 1).css({fill: "none", stroke: "black"}).before(g.$).$,
svg.poly([[0, 6], [0, 0], [12, 0], [0, 6], [3, 6]], 1).css({fill: "none", stroke: "black"}).before(g.$).$,
svg.circle(0.2, [0, 6], g).$,
];
g.$.children().css({fill: "green"});
Expand All @@ -26,20 +26,25 @@ ex1: (sel) => {
svg.circle(0.6, [0, 0]);
svg.circle(0.6, [12, 0]);
g = svg.group().css({"font-size": "24px", fill: "white", "font-weight": "bold"});
svg.text("+", [0, 0], g);
svg.text("+", [0, -0.05], g);
svg.text("–", [12, 0], g);

g = svg.group().css({"font-size": "18px"});
tog.push(g.$);
svg.text("θ", [9.8, 0.5], g);
svg.text("θ", [1.7, 5.55], g);
svg.final().$.addClass("VDiag");

let t = clickCycle.toggle;
// t(tog, false, 0, 1, 2, 3, 4, 5, 6);
console.log(tog);

clickCycle(svg.element, -1,
() => {t(tog, false, 0, 1, 2, 3, 4, 5, 6)},
() => {t(tog, false, 0, 1, 2, 3, 4, 5, 6, 7)},
() => {t(tog, true, 0)},
() => {t(tog, true, 3)},
() => {t(tog, true, 4)},
() => {t(tog, false, 0, 3, 4); t(tog, true, 1, 2)},
() => {t(tog, false, 0, 3, 4); t(tog, true, 1, 2, 7)},
() => {t(tog, true, 5)},
() => {t(tog, true, 6)},
);
Expand Down
Binary file added docs/p30/elec/img/efield.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
123 changes: 123 additions & 0 deletions docs/p30/elec/motion.htm
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
<section class="Post" data-answers="1" data-icon="correct">
<h2 class="Collapse">Remember?<span data-print="PreTest"></span></h2><div class="Collapse">
<div id="PreTest"><ol>
<li>A ball is launched from the ground with an initial velocity of 36.0 m/s directed at a 52.0° angle above horizontal. Determine the “hang time” and the “range” of the ball.</li>
</ol></div>
</div></section>


<section class="Post" data-icon="slides">
<h2 class="Collapse">Lesson Notes<span data-print="LessonNotes"></span></h2><div class="Collapse">
<div id="LessonNotes">

<section class="Slide Center">
<h1 id="Title">Motion in a Uniform Electric Field</h1>
</section>

<section class="Slide"><h3>Projecile Motion</h3>
<p><em class="Defn">Projectile motion</em> is a type of 2D motion where the force (and therefore acceleration) remains constant.</p>
<ul data-cue="+">
<li>We studied projectile motion in Physics 20, where the constant acceleration is caused by gravity.</li>
<li data-cue="+">The motion in the <span class="TeX">y</span>-direction (<span class="TeX">{\vec{\bf a}}_y = \vec{\bf g}</span>) is <em>uniform accelerated motion</em>.</li>
<li data-cue="+">The motion in the <span class="TeX">x</span>-direction (<span class="TeX">{\vec{\bf a}}_x = 0</span>) is <em>uniform motion</em>.</li>
</ul>
<div data-cue="+">
<p>The equations for uniform accelerated motion / projectile motion are...</p>
<p class="TeX">{\vec{\bf a}} = {{{\vec{\bf v}}_f - {\vec{\bf v}}_i}\over\Delta t}</p>
<p class="TeX">\Delta{\vec{\bf d}} = {{{\vec{\bf v}}_i + {\vec{\bf v}}_f}\over 2}\Delta t</p>
<p class="TeX">{v_f}^2 = {v_i}^2 + 2{\vec{\bf a}}\cdot{\Delta\vec{\bf d}}</p>
<p class="TeX">{\Delta\vec{\bf d}} = {\vec{\bf v}}_i\Delta t + {1\over 2}{\vec{\bf a}}\left(\Delta t\right)^2</p>
<!--p><p class="TeX">{\Delta\vec{\bf d}} = {\vec{\bf v}}_f\Delta t - {1\over 2}{\vec{\bf a}}\left(\Delta t\right)^2</p></p-->
</div>
<ul data-cue="+"><li>The shape of the trajectory is a <em class="Defn">parabola</em> because when the acceleration is constant, the relationship between position and time is <em>quadratic</em>, as shown by the last equation above.</li></ul>
<table data-cue="+" class="Center">
<thead>
<tr><i><th colspan="2"></th><th class="xy"><span class="TeX">x</span></th><th class="xy"><span class="TeX">y</span></th></i></tr>
</thead>
<tbody>
<tr>
<td><span class="TeX">\vec{\bf a}</span></td>
<td><span class="TeX">{\rm{m/s^2}}</span></td><td>0.00</td><td>–9.81</td></tr>
<tr>
<td><span class="TeX">{\vec{\bf v}}_i</span></td>
<td><span class="TeX">{\rm{m/s}}</span></td>
<td rowspan="2"><span class="TeX">36.0\ \cos(52.0°)\\=22.2</span></td><td><span class="TeX">36.0\ \sin(52.0°)\\=28.4</span></td>
</tr>
<tr>
<td><span class="TeX">{\vec{\bf v}}_f</span></td>
<td><span class="TeX">{\rm{m/s}}</span></td>
<td class="Reveal"><span>–28.4</span></td>
</tr>
<tr>
<td><span class="TeX">\Delta\vec{\bf d}</span></td>
<td><span class="TeX">{\rm{m}}</span></td>
<td class="Reveal"><span>128</span></td>
<td>0.00</td>
</tr>
<tr>
<td><span class="TeX">\Delta t</span></td>
<td><span class="TeX">{\rm{s}}</span></td>
<td class=Reveal colspan="2"><span>5.78</span></td></tr>
</tbody>
</table>

<ul data-cue="+">
<li>Because there is no <span class="TeX">x</span>-acceleration, the initial and final <span class="TeX">x</span>-velocities are the same.</li>
<li data-cue="+">Time is a <em>scalar</em>; it does not have separate <span class="TeX">x</span>- and <span class="TeX">y</span>-components.</li>
<li data-cue="+">Choose one of the kinematics equations to find <span class="TeX">{\vec{\bf v}}_{fy}</span>:
<p class="TeX">{v_f}^2 = {v_i}^2 + 2{\vec{\bf a}}\cdot{\Delta\vec{\bf d}}</p></li>
<li data-cue="+">Choose a different equation to find <span class="TeX">\Delta t</span>:
<p class="TeX">{\vec{\bf a}} = {{{\vec{\bf v}}_f - {\vec{\bf v}}_i}\over\Delta t}</p></li>
<li data-cue="+">Finally, find <span class="TeX">\Delta{\vec{\bf d}}_x</span>:
<p class="TeX">\Delta\vec{\bf d} = \vec{\bf v}_{avg}\Delta t</p></li>
</ul>

<!--ul data-cue="+">
<li>When a charge moves in a uniform electric field, it will have a constant acceleration, but it will not equal <span class="TeX">\vec{\bf g}</span>...
<p class="TeX">\vec{\bf a} = \frac{{\vec{\bf F}}_e}{m} = \frac{q\vec{\bf E}}{m}</p>
</li>
<li data-cue="+">Usually we will take the direction of the acceleration to be the <span class="TeX">-y</span>-direction.</li>
</ul-->
</section>

<section class="Slide"><h3>Motion in a Uniform Electric Field</h3>
<p>If the electric field is uniform, a charge movingthrough the field will experience a <em>constant acceleration</em>, so its motion will be parabolic just like for projectile motion.</p>
<ul data-cue="+">
<li>The constant acceleration is calculated using Newton’s 2<sup>nd</sup> Law:<p class="TeX">\vec{\bf a} = {{\vec{\bf F}}_e + {\vec{\bf F}}_g \over m} = {q{\vec{\bf E}} + m{\vec{\bf g}}\over m}</p>
<li data-cue="+">Typically, we would set up an experiment so that the electric and gravitational fields are both in the <i>y</i>-direction, so that <span class="TeX">{\vec{\bf a}}_x = 0</span>.</li>
<li data-cue="+">Often (but not always) the electric force is so strong that the gravity term has no effect on the answer to the precision of our calculations.</li>
</ul>
</section>

<script type="text/javascript" data-init="notes">

loadFeed.notes = () => {
let rev = $("td.Reveal").on("click", (ev) => {
$(ev.currentTarget).children("span").fadeToggle();
});
if (!isSlideshow()) $("td.Reveal > span").show();
}

</script>

</div></div></section>

<section class="Post" data-show="2024.9.25.10" data-icon="gdrv">
<h2 class="Collapse">Practice &amp; Review</h2><div class="Collapse">
<p class="BtnGrid">
<button data-icon="gdrv" data-gdrv="187EL4mH70qJ14-cCA1S7vhvh2GDdakVw7B0Kh29XM8I">Answer Key</button>
</p>
</div></section>

<script type="text/javascript">

loadFeed.data = {
title: `${siteData.lesson}11.2 — Motion in a Uniform Electric Field`,
answerDate: "2024.9.25.10",
num: "11.2",
up: "p30/units/B",
prev: "p30/elec/Efield",
next: "p30/elec/volt",
}

</script>
Loading

0 comments on commit 2fd4a8a

Please sign in to comment.