An implementation of RCAN described in the paper using tensorflow. Image Super-Resolution Using Very Deep Residual Channel Attention Networks
Published in ECCV 2018, written by Y. Zhang, K. Li, L. Wang, B. Zhong, and Y. Fu
- Python 3.6.5
- Tensorflow 1.13.1
- Pillow 6.0.0
- numpy 1.15.0
- scikit-image 0.15.0
python main.py --train_GT_path ./GT_path --train_LR_path ./LR_path --test_GT_path ./test_GT_path --test_LR_path ./test_LR_path --test_with_train True --scale 2(or 3, 4, ...) --log_freq 1000
- LR image and HR image pair should have same index when they are sorted by name respectively.
- You can refer to the script file (run.sh) in my repository
- Download pre-trained model.
- Unzip the pre-trained model file
tar -cvf model.tar
- Test using benchmarks
python main.py --mode test --pre_trained_model ./model/RCAN_X2(or 3, 4) --test_LR_path ./benchmark_LR_path --test_GT_path ./benchmark_GT_path --scale 2(or 3, 4) --self_ensemble False
If you want to use self_ensemble, --self_ensemble option to True
- You can refer to the script file (run.sh) in my repository
- Download pre-trained model.
- Unzip the pre-trained model file
tar -cvf model.tar
- Inference your own images
python main.py --mode test_only --pre_trained_model ./model/RCAN_X2(or 3, 4) --test_LR_path ./your_own_images --scale 2(or 3, 4) --chop_forward False
If your images are too large, OOM error can occur. In that case, --chop_forward option to True
Method | Scale | Set5 | Set14 | B100 | Urban100 |
---|---|---|---|---|---|
Bicubic | X2 | 33.66 / 0.9299 | 30.24 / 0.8688 | 29.56 / 0.8431 | 26.88 / 0.8403 |
RDN | X2 | 38.24 / 0.9614 | 34.01 / 0.9212 | 32.34 / 0.9017 | 32.89 / 0.9353 |
RCAN(paper) | X2 | 38.27 / 0.9614 | 34.12 / 0.9216 | 32.41 / 0.9027 | 33.34 / 0.9384 |
RCAN(my results) | X2 | 38.25 / 0.9615 | 34.07 / 0.9216 | 32.36 / 0.9020 | 33.12 / 0.9367 |
Method | Scale | Set5 | Set14 | B100 | Urban100 |
---|---|---|---|---|---|
Bicubic | X3 | 30.39 / 0.8682 | 27.55 / 0.7742 | 27.21 / 0.7385 | 24.46 / 0.7349 |
RDN | X3 | 34.71 / 0.9296 | 30.57 / 0.8468 | 29.26 / 0.8093 | 28.80 / 0.8653 |
RCAN(paper) | X3 | 34.74 / 0.9299 | 30.65 / 0.8482 | 29.32 / 0.8111 | 29.09 / 0.8702 |
RCAN(my results) | X3 | 34.75 / 0.9302 | 30.61 / 0.8470 | 29.31 / 0.8105 | 29.03 / 0.8693 |
Method | Scale | Set5 | Set14 | B100 | Urban100 |
---|---|---|---|---|---|
Bicubic | X4 | 28.42 / 0.8104 | 26.00 / 0.7027 | 25.96 / 0.6675 | 23.14 / 0.6577 |
RDN | X4 | 32.47 / 0.8990 | 28.81 / 0.7871 | 27.72 / 0.7419 | 26.61 / 0.8028 |
RCAN(paper) | X4 | 32.63 / 0.9002 | 28.87 / 0.7889 | 27.77 / 0.7436 | 26.82 / 0.8087 |
RCAN(my results) | X4 | 32.56 / 0.8996 | 28.89 / 0.7891 | 27.78 / 0.7434 | 26.81 / 0.8079 |
Qualitative results are will be updated soon!
If you have any questions or comments on my codes, please email to me. [email protected]