Skip to content

Some applications of text embedding model, e.g., semantic retrieval and clustering.

Notifications You must be signed in to change notification settings

duanyu/embedding_application

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 

Repository files navigation

embedding_application

一些embedding model的应用,例如语义检索、聚类等。

语义检索

应用:鲁迅全集检索

embedding_luxun_search.ipynb

鲁迅全集进行passage切分,随后用bge-large-zh-v1.5进行embedding表征,随后导入milvus,然后就可以搜索各种内容啦。

由于是语义检索的概念,像“内卷与躺平”这种query也可以搜到不错的结果。

说明:

  1. 在modelscope-GPU环境可直接运行,所需依赖的库已在jupyter中指明,在其他环境下还需pip3 install modelscope
  2. 在GPU上大约需消耗2G显存,CPU也能跑但是贼慢。

感兴趣的读者可以读这篇博文,以了解更多细节。

聚类

应用:新闻早报聚类

embedding_news_clustering.ipynb

将几个微信公众号的早报新闻解析为(title,passages)格式,随后使用bge-large-zh-v1.5对title进行表征,最后进行DBSCAN聚类,以聚合相同、相关的新闻。

说明:

  1. 在modelscope-GPU环境可直接运行,所需依赖的库已在jupyter中指明,在其他环境下还需pip3 install modelscope
  2. DBSCAN的超参选择方面,metric选择cosine距离、eps选择0.4-0.45、min_samples=2。其中eps越大,越能包含“相关”新闻;eps越小,越只能包含“相同”新闻;
  3. 解析url使用了unstructured,此库依赖nltk_data中的punkt、averaged_perceptron_tagge,如果nltk下载慢,建议直接使用下载好的punkt、averaged_perceptron_tagge(本项目source目录下已下载好,可直接用)。

感兴趣的读者可以读这篇博文,以了解更多细节。

About

Some applications of text embedding model, e.g., semantic retrieval and clustering.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published