Skip to content

Releases: dwavesystems/dwave-pytorch-plugin

0.2.0

01 Aug 23:45
d3f2989

Choose a tag to compare

New Features

  • Support custom weight initialization and setting. See #18.

  • Add DiscreteVariationalAutoencoder class for training discrete models as priors. See #8

  • Add pseudo KL divergence loss function for use with Discrete Variational Autoencoder. See #8.

  • Support hidden units. See #7.

Upgrade Notes

  • Decouple sampling parameters (beta) from the model. See #14.

  • Reduce number of operations in the GRBM objective function. See #14.

  • Remove networkx dependency. See #14.

  • Simplify GraphRestrictedBoltzmannMachine constructor to require only node and edge lists. See #14.

  • Add option to return samples as dimod.Sampleset from GraphRestrictedBoltzmannMachine.sample(). See #23.

Deprecation Notes

  • Simplify GraphRestrictedBoltzmannMachine constructor to require only node and edge lists. See #14.

  • Remove abstract base class. See #14.

Bug Fixes

  • Make GraphRestrictedBoltzmannMachine.quasi_objective's argument kind optional. See #18.

Other Notes

  • Add a directory for models and move boltzmann_machine.py from dwave/plugins/torch/ to dwave/plugins/torch/models/. See #24.

0.1.0

27 Mar 21:30

Choose a tag to compare

Prelude

  • Initial release of dwave-pytorch-plugin.