Releases: dwavesystems/dwave-pytorch-plugin
0.2.0
New Features
-
Support custom weight initialization and setting. See #18.
-
Add
DiscreteVariationalAutoencoderclass for training discrete models as priors. See #8 -
Add pseudo KL divergence loss function for use with Discrete Variational Autoencoder. See #8.
-
Support hidden units. See #7.
Upgrade Notes
-
Decouple sampling parameters (beta) from the model. See #14.
-
Reduce number of operations in the GRBM objective function. See #14.
-
Remove networkx dependency. See #14.
-
Simplify
GraphRestrictedBoltzmannMachineconstructor to require only node and edge lists. See #14. -
Add option to return samples as
dimod.SamplesetfromGraphRestrictedBoltzmannMachine.sample(). See #23.
Deprecation Notes
-
Simplify
GraphRestrictedBoltzmannMachineconstructor to require only node and edge lists. See #14. -
Remove abstract base class. See #14.
Bug Fixes
- Make
GraphRestrictedBoltzmannMachine.quasi_objective's argumentkindoptional. See #18.
Other Notes
- Add a directory for models and move
boltzmann_machine.pyfromdwave/plugins/torch/todwave/plugins/torch/models/. See #24.