CBiGAN: a combined model that generalizes Bidirectional GANs (BiGANs) and AutoEncoders, applied to anomaly detection in images. The repo provides training and evaluation code for the MVTecAD anomaly detection benchmark.
Also provides a TensorFlow2 implementation of BiGAN following the Wasserstein GAN (WGAN) formulation.
You need:
- Python 3
- Tensorflow 2.4.0
- packages in requirements.txt
You can use the Dockerfile to build an image.
Download the whole MVTec-AD dataset and extract into data/mvtec-ad
.
Check out the train.py
script for training parameters:
python train.py -h
Combining GANs and AutoEncoders for Efficient Anomaly Detection. Fabio Carrara, Giuseppe Amato, Luca Brombin, Fabrizio Falchi, Claudio Gennaro. In 2020 25th International Conference on Pattern Recognition (ICPR) (pp. 3939-3946). IEEE. [arXiv, DOI]
@inproceedings{carrara2021combining,
title={Combining gans and autoencoders for efficient anomaly detection},
author={Carrara, Fabio and Amato, Giuseppe and Brombin, Luca and Falchi, Fabrizio and Gennaro, Claudio},
booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
pages={3939--3946},
year={2021},
organization={IEEE}
}