Skip to content

fdcqqqq/MascUnet

Repository files navigation

Multi-attention Brain Tumor Image Segmentation Algorithm Based on Unet

Installation

  • Unbuntu 18.04
  • Install TensorFlow 1.14 ,keras 2.1.5 and CUDA 9.0
  • Clone this repo
git clone https://github.com/fdcqqqq/MascUnet
cd MascUnet

Data Preparation

  1. Prepare your dataset under the directory dataset .
  • Directory structure on new dataset needed for training and testing:
    • dataset/train_HGG
    • dataset/train_LGG
    • dataset/test_HGG
    • dataset/test_LGG

Data preprocessing

  • Modify paramter values in data_processing.py
  • Run ./data_processing.py to start data_processing.
python3 data_processing.py

Train

  • Modify paramter values in ./train.py

  • Run ./train.py to start the train the model.

    python3 train.py

Evaluate

  • Specify the model path and test file path in ./predict.py

  • Run ./predict.py to start the evaluation.

    python3 predict.py
  • draw 3D nii predict images to 2D and show figures.

    python3 ./show_slicer_nii.py 

Results

  1. Generate images by following specifications under:
  • ./prediction

Figures

Framework


Brats 2019 Dataset

The Brats 2019 contains four modalities:(a): T2. (b): Flair. (c): T1.**(d):**T1c ,and label is (e)Grouth truth,the label include four type of tags,as shown in(e),which are normal tissue(tag 0), necrosis and non-enhancing tumor(tag1),edema(tag 2),and enhancing tumor(tag 4).

Parallel Dilation Convolution Feature Extraction Module


Masc Attention Module


Experiences



Note

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages