Skip to content

Commit

Permalink
Use old stride_windows implementation on 32-bit x86
Browse files Browse the repository at this point in the history
  • Loading branch information
QuLogic committed Nov 7, 2024
1 parent a93736b commit a0aabe9
Showing 1 changed file with 35 additions and 4 deletions.
39 changes: 35 additions & 4 deletions lib/matplotlib/mlab.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@

import functools
from numbers import Number
import sys

import numpy as np

Expand Down Expand Up @@ -210,6 +211,30 @@ def detrend_linear(y):
return y - (b*x + a)


def _stride_windows(x, n, noverlap=0):
if noverlap >= n:
raise ValueError('noverlap must be less than n')
if n < 1:
raise ValueError('n cannot be less than 1')

x = np.asarray(x)

if n == 1 and noverlap == 0:
return x[np.newaxis]
if n > x.size:
raise ValueError('n cannot be greater than the length of x')

# np.lib.stride_tricks.as_strided easily leads to memory corruption for
# non integer shape and strides, i.e. noverlap or n. See #3845.
noverlap = int(noverlap)
n = int(n)

step = n - noverlap
shape = (n, (x.shape[-1]-noverlap)//step)
strides = (x.strides[0], step*x.strides[0])
return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)


def _spectral_helper(x, y=None, NFFT=None, Fs=None, detrend_func=None,
window=None, noverlap=None, pad_to=None,
sides=None, scale_by_freq=None, mode=None):
Expand Down Expand Up @@ -304,17 +329,23 @@ def _spectral_helper(x, y=None, NFFT=None, Fs=None, detrend_func=None,
raise ValueError(
"The window length must match the data's first dimension")

result = np.lib.stride_tricks.sliding_window_view(
x, NFFT, axis=0)[::NFFT - noverlap].T
if sys.maxsize > 2**32: # NumPy version on 32-bit OOMs.
result = np.lib.stride_tricks.sliding_window_view(
x, NFFT, axis=0)[::NFFT - noverlap].T
else:
result = _stride_windows(x, NFFT, noverlap=noverlap)
result = detrend(result, detrend_func, axis=0)
result = result * window.reshape((-1, 1))
result = np.fft.fft(result, n=pad_to, axis=0)[:numFreqs, :]
freqs = np.fft.fftfreq(pad_to, 1/Fs)[:numFreqs]

if not same_data:
# if same_data is False, mode must be 'psd'
resultY = np.lib.stride_tricks.sliding_window_view(
y, NFFT, axis=0)[::NFFT - noverlap].T
if sys.maxsize > 2**32: # NumPy version on 32-bit OOMs.
resultY = np.lib.stride_tricks.sliding_window_view(
y, NFFT, axis=0)[::NFFT - noverlap].T
else:
resultY = _stride_windows(y, NFFT, noverlap=noverlap)
resultY = detrend(resultY, detrend_func, axis=0)
resultY = resultY * window.reshape((-1, 1))
resultY = np.fft.fft(resultY, n=pad_to, axis=0)[:numFreqs, :]
Expand Down

0 comments on commit a0aabe9

Please sign in to comment.