Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix SVD Instability #17

Merged
merged 13 commits into from
Dec 12, 2024
6 changes: 6 additions & 0 deletions CHANGELOG.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,12 @@
TextWiser CHANGELOG
=====================

-------------------------------------------------------------------------------
Dec 9, 2024 2.0.2
-------------------------------------------------------------------------------
minor:
- Updated SVD tests to fix the directional instability of eigen vectors

-------------------------------------------------------------------------------
Sep 9, 2024 2.0.1
-------------------------------------------------------------------------------
Expand Down
18 changes: 12 additions & 6 deletions tests/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,18 +25,24 @@ def _reset_seed(self, seed=1234):
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)

def _test_fit_transform(self, tw_model, expected, atol=1e-6):
def _test_fit_transform(self, tw_model, expected, svd=False, atol=1e-6):
predicted = tw_model.fit_transform(docs)
# torch.set_printoptions(precision=10)
# print(predicted)
self.assertTrue(torch.allclose(predicted, expected.to(device), atol=atol))
if svd:
self.assertTrue(torch.allclose(np.abs(predicted), np.abs(expected.to(device)), atol=atol))
else:
self.assertTrue(torch.allclose(predicted, expected.to(device), atol=atol))

def _test_fit_before_transform(self, tw_model, expected, atol=1e-6):
def _test_fit_before_transform(self, tw_model, expected, svd=False, atol=1e-6):
tw_model.fit(docs)
# torch.set_printoptions(precision=10)
# print(tw_model.transform(docs))
self.assertTrue(torch.allclose(tw_model.transform(docs), expected.to(device), atol=atol))
self.assertTrue(torch.allclose(tw_model(docs), expected.to(device), atol=atol))
if svd:
self.assertTrue(torch.allclose(np.abs(tw_model.transform(docs)), np.abs(expected.to(device)), atol=atol))
self.assertTrue(torch.allclose(np.abs(tw_model(docs)), np.abs(expected.to(device)), atol=atol))
else:
self.assertTrue(torch.allclose(tw_model.transform(docs), expected.to(device), atol=atol))
self.assertTrue(torch.allclose(tw_model(docs), expected.to(device), atol=atol))

def _get_test_path(self, *names):
cwd = os.getcwd()
Expand Down
4 changes: 2 additions & 2 deletions tests/test_svd.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,9 @@ def test_fit_transform(self):
expected = torch.tensor([[0.8526761532, -0.5070778131],
[0.9837458134, -0.0636523664],
[0.7350711226, 0.6733918786]], dtype=torch.float32)
self._test_fit_transform(tw, expected)
self._test_fit_transform(tw, expected, svd=True)
self._reset_seed()
self._test_fit_before_transform(tw, expected)
self._test_fit_before_transform(tw, expected, svd=True)

def test_min_components(self):
with self.assertRaises(ValueError):
Expand Down
5 changes: 4 additions & 1 deletion tests/test_transformer_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@
import torch
import warnings

import numpy as np

from textwiser import TextWiser, Embedding, Transformation, WordOptions, device
from tests.test_base import BaseTest, docs

Expand Down Expand Up @@ -29,4 +31,5 @@ def test_list_handling(self):
[0.0000000000, 0.0000000000]], dtype=torch.float32)
]
for p, e in zip(predicted, expected):
self.assertTrue(torch.allclose(p, e.to(device), atol=1e-6))
# np.abs due to SVD instability
self.assertTrue(torch.allclose(np.abs(p), np.abs(e.to(device)), atol=1e-5))
2 changes: 1 addition & 1 deletion textwiser/_version.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright 2019 FMR LLC <[email protected]>
# SPDX-License-Identifer: Apache-2.0

__version__ = "2.0.1"
__version__ = "2.0.2"
Loading