Skip to content

filpano/from-keras-to-production-workshop

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

From Keras to Production

Daten

https://www.kaggle.com/moltean/fruits

Notebooks

https://github.com/codecentric/from-keras-to-production-workshop.git

Images pullen

  • docker pull codecentric/from-keras-to-production-baseimage
  • docker pull codecentric/tensorflow-serving-baseimage
  • docker pull codecentric/jenkins-python-image

Jupyterlab starten

docker run -p 8888:8888 --mount type=bind,source=$(pwd)/notebooks,target=/keras2production/notebooks codecentric/from-keras-to-production-baseimage

# Für Windows
docker run -p 8888:8888 --mount type=bind,source=%cd%/notebooks,target=/keras2production/notebooks codecentric/from-keras-to-production-baseimage

Jenkins starten

docker cp <jupyter-container>:keras2production/fruits fruits
docker run -p 8080:8080 -p 50000:50000 --mount type=bind,source=$(pwd)/fruits,target=/fruits --name jenkins_solution codecentric/jenkins-python-image

TensorFlow Serving starten

docker run -p 8501:8501 -p 8500:8500 --mount type=bind,source=$(pwd)/notebooks/6-models/fruits/,target=/models/fruits -e MODEL_NAME=fruits -t tensorflow/serving:1.12.0

Run slides

pip install -r requirements.txt
cd slides
jupyter nbconvert end2end_ds.ipynb --to slides --post serve --reveal-prefix=reveal.js

References and further information

IPython and Jupyterlab

https://ipython.readthedocs.io/en/stable/interactive/python-ipython-diff.html

Reinforcement Learning

https://www.youtube.com/watch?v=FCyZplb0ul4

Free Notebooks from Deep Learning with Python Book

https://github.com/fchollet/deep-learning-with-python-notebooks

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 86.0%
  • HTML 6.2%
  • JavaScript 4.4%
  • CSS 3.2%
  • Python 0.2%