Skip to content
/ vivid Public

Next generation framework for collaborative data science and automated machine learning

License

Notifications You must be signed in to change notification settings

frootlab/vivid

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Vivid Code

Building Status Documentation Status PIP Version

Vivid Code is a pioneering software framework for next generation data analysis applications, that interconnects collaborative data science with automated machine learning.

Based on the Cloud-Assisted Meta programming (CAMP) paradigm, the framework allows the usage of Currently Best Fitting (CBF) algorithms. Before code interpretation / compilation the concrete algorithms, that implement the CBF specifications, are automatically chosen from local and public catalog servers, that host and deploy the concrete algorithms. Thereby the specification is constituted by a unique algorithm category, a data domain and a metric, which substantiates the meaning of Best Fitting within the respective algorithm- and data context. An example is the average prediction accuracy within a fixed set of gold standard samples of the data domain (e.g. latin handwriting samples, spoken word samples, TCGA gene expression data, etc.).

The Vivid Code framework allows the implementation of cutting edge enterprise analytical applications, that are automatically kept up-to-date and therefore minimize their maintenance costs. Also the Vivid Code framework facilitates the publication, application, sharing and comparison of algorithms, within and between workgroups.

All components of the Vivid Code framework are open source and based on the Python programming language.

Current Development Status

The individual components of the Vivid Code frame work are in different development stages. Rian currently is in Pre-Alpha development stage, which immediately follows the Planning stage. This means, that at least some essential requirements of Rian are not yet implemented.

Installation

Comprehensive information and installation support is provided within the online manual. If you already have a Python environment configured on your computer, you can install the latest distributed version by using pip:

$ pip install vivid

Documentation

The documentation of the latest distributed version is available as an online manual and for download, given in the formats PDF, EPUB and HTML.

Contributions

Contributors are very welcome! Feel free to report bugs, ideas and feature requests to the issue tracker, provided by GitHub. Currently, as our team still is growing, we do not provide any Contribution Guide Lines. So, if you are interested to help or to join the team, we would be glad, to hear about you.

License

All components of the Vivid Code frame work are open source software and available free for any use under the GPLv3 license:

© 2019 Frootlab Developers:
  Patrick Michl <[email protected]>
© 2013-2019 Patrick Michl