-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'feat/random-forests' into dev
- Loading branch information
Showing
19 changed files
with
420,568 additions
and
35 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
library(party) | ||
library(caret) | ||
library(randomForest) | ||
library(parallel) | ||
library(ranger) | ||
library(pbapply) | ||
|
||
#### 0. Load data #### | ||
# Load QC data | ||
spe <- read.csv("data/proc/distributions_spe_qc.csv", header=TRUE, sep="\t") | ||
spa <- read.csv("data/proc/distributions_spa_qc.csv", header=TRUE, sep="\t") | ||
env <- read.csv("data/proc/distributions_env_qc.csv", header=TRUE, sep="\t") | ||
|
||
# Remove site with NAs for landcover variables | ||
(inds_withNAs <- unique(unlist(sapply(env, function(x) which(is.na(x)))))) | ||
if (length(inds_withNAs) > 0) { | ||
spe <- spe[-inds_withNAs,] | ||
spa <- spa[-inds_withNAs,] | ||
env <- env[-inds_withNAs,] | ||
} | ||
|
||
# Combine environmental variables | ||
vars <- cbind(env, spa) | ||
|
||
# Separate into training/testing datasets | ||
set.seed(42) | ||
inds_train <- sample(nrow(spe), 0.7*nrow(spe), replace = FALSE) | ||
|
||
spe_train <- spe[inds_train,] | ||
spa_train <- spa[inds_train,] | ||
env_train <- env[inds_train,] | ||
vars_train <- vars[inds_train,] | ||
|
||
spe_test <- spe[-inds_train,] | ||
spa_test <- spa[-inds_train,] | ||
env_test <- env[-inds_train,] | ||
vars_test <- vars[-inds_train,] | ||
|
||
# Remove species without observations in subsets | ||
(inds_withoutobs <- c(which(sapply(spe_train, sum) == 0), which(sapply(spe_test, sum) == 0))) | ||
if (length(inds_withoutobs > 0)) { | ||
spe_train <- spe_train[, -inds_withoutobs] | ||
spe_test <- spe_test[, -inds_withoutobs] | ||
} | ||
|
||
# Create single species subset | ||
sp <- "sp1" | ||
sp_train <- as.factor(spe_train[,sp]) | ||
sp_test <- as.factor(spe_test[,sp]) | ||
|
||
#### 1. Party #### | ||
|
||
rf <- cforest(as.factor(spe$sp20) ~ ., | ||
data = vars, | ||
control = cforest_unbiased(mtry = 2, ntree = 100)) | ||
|
||
(vars_imp <- varimp(rf, conditional = T)) | ||
(vars_imp <- varimp(rf)) | ||
|
||
sp1_pred <- predict(rf, OOB=TRUE) | ||
|
||
table(spe$sp1, sp1_pred) | ||
|
||
#### 2. randomForest #### | ||
|
||
set.seed(42) | ||
system.time( | ||
model1 <- randomForest(sp_train ~ ., | ||
data = vars_train, | ||
importance = TRUE) | ||
) | ||
model1 | ||
# Predict test set | ||
pred_test <- predict(model1, vars_test, type = "class") | ||
# Checking classification accuracy | ||
table(sp_test, pred_test) | ||
mean(sp_test == pred_test)*100 | ||
|
||
# Check variable importance | ||
importance(model1) | ||
varImpPlot(model1) | ||
|
||
# Select number of trees | ||
set.seed(42) | ||
model2 <- randomForest(sp_train ~ ., | ||
data = vars_train, | ||
importance = TRUE, | ||
ntree = 1000) | ||
set.seed(42) | ||
model3 <- randomForest(sp_train ~ ., | ||
data = vars_train, | ||
importance = TRUE, | ||
ntree = 2000) | ||
par(mfrow=c(2,2)) | ||
plot(model1$err.rate[,"OOB"], type = "l", xlab = "ntree", ylab = "OOB error rate") | ||
plot(model2$err.rate[,"OOB"], type = "l", xlab = "ntree", ylab = "OOB error rate") | ||
plot(model3$err.rate[,"OOB"], type = "l", xlab = "ntree", ylab = "OOB error rate") | ||
par(mfrow=c(1,1)) | ||
|
||
## Find optimal mtry value | ||
set.seed(42) | ||
mtry <- tuneRF(vars_train, sp_train, ntreeTry=500, | ||
stepFactor=1.5,improve=0.01, trace=TRUE, plot=TRUE) | ||
# Best mtry = 5, same as default | ||
|
||
## Wrap as function | ||
rf_train <- function(sp, vars, ...) { | ||
set.seed(42) | ||
sp_train <- as.factor(sp) | ||
rf <- randomForest(sp_train ~ ., | ||
data = vars, | ||
importance = TRUE, | ||
...) | ||
return(rf) | ||
} | ||
|
||
system.time( | ||
rf_models <- mclapply(spe_train, function(x) rf_train(x, vars_train), mc.cores = 12) | ||
) | ||
|
||
rf_res <- data.frame(species = colnames(spe_train), | ||
OOB = sapply(rf_models, function(x) 1 - sum(x$y == x$predicted)/length(x$y)), | ||
error_rate_0 = sapply(rf_models, function(x) median(x$err.rate[,"0"])), | ||
error_rate_1 = sapply(rf_models, function(x) median(x$err.rate[,"1"])) | ||
) | ||
rf_res | ||
|
||
barplot(rf_res$OOB, names.arg = rf_res$species) | ||
hist(rf_res$OOB, breaks=20) | ||
boxplot(rf_res$OOB) | ||
|
||
# Test on testing subset | ||
system.time(rf_tests <- lapply(rf_models, function(x) predict(x, vars_test, type = "class"))) | ||
rf_tests | ||
|
||
rf_res$test_error_rate <- mapply(function(x,y) 1 - confusionMatrix(as.factor(x), y)$overall["Accuracy"], spe_test, rf_tests) | ||
barplot(rf_res$test_error_rate, names.arg = rf_res$species) | ||
|
||
#### 3. Ranger #### | ||
# Time models | ||
system.time(rf_model <- randomForest(sp_train ~ ., data = vars_train, importance = TRUE)) | ||
system.time(ranger_model <- ranger(sp_train ~ ., data = vars_train, importance = "impurity", seed = 42)) | ||
|
||
## Wrap as function | ||
ranger_train <- function(sp, vars, ...) { | ||
sp_train <- as.factor(sp) | ||
rf <- ranger(sp_train ~ ., | ||
data = vars, | ||
importance = "impurity", | ||
seed = 42, | ||
...) | ||
return(rf) | ||
} | ||
|
||
# Multi-species calls | ||
system.time( | ||
rf_models <- lapply(spe_train[,1:10], function(x) rf_train(x, vars_train)) | ||
) | ||
system.time( | ||
ranger_models <- pblapply(spe_train, function(x) ranger_train(x, vars_train)) | ||
) | ||
|
||
# Parallized calls | ||
system.time( | ||
rf_models <- mclapply(spe_train[,], function(x) rf_train(x, vars_train), mc.cores = 12) | ||
) | ||
system.time( | ||
ranger_models <- mclapply(spe_train[,], function(x) ranger_train(x, vars_train), mc.cores = 12) | ||
) | ||
|
||
# View results | ||
rf_models | ||
ranger_models | ||
|
||
# Combine results in dataframe | ||
rf_res <- data.frame(species = colnames(spe_train), | ||
OOB = sapply(ranger_models, function(x) x$prediction.error), | ||
error_rate_0 = sapply(ranger_models, function(x) x$confusion.matrix[3]/sum(x$confusion.matrix[c(1,3)])), | ||
error_rate_1 = sapply(ranger_models, function(x) x$confusion.matrix[2]/sum(x$confusion.matrix[c(2,4)])) | ||
) | ||
rf_res | ||
|
||
# Plot results | ||
barplot(rf_res$OOB, names.arg = rf_res$species) | ||
hist(rf_res$OOB, breaks=20) | ||
boxplot(rf_res$OOB) | ||
|
||
# Plot presence vs absence error rate | ||
barplot(rf_res$error_rate_0, names.arg = rf_res$species) | ||
barplot(rf_res$error_rate_1, names.arg = rf_res$species) | ||
|
||
## Export model | ||
save(ranger_models, file = "data/proc/rf_models.RData") | ||
|
||
## Test ranger predictions | ||
# Make predictions | ||
system.time(ranger_tests <- lapply(ranger_models, function(x) predict(x, vars_test))) | ||
ranger_tests | ||
|
||
# Extract confusion matrix and results | ||
ranger_confusion <- mapply(function(x,y) confusionMatrix(data = x$predictions, | ||
reference = as.factor(y), | ||
positive = "1"), | ||
ranger_tests, spe_test, SIMPLIFY = FALSE) | ||
rf_test_res <- data.frame(species = colnames(spe_test), | ||
test_OOB = sapply(ranger_confusion, function(x) 1 - x$overall["Accuracy"]), | ||
test_error_rate_0 = sapply(ranger_confusion, function(x) 1 - x$byClass["Specificity"]), | ||
test_error_rate_1 = sapply(ranger_confusion, function(x) 1 - x$byClass["Sensitivity"])) | ||
head(rf_test_res) | ||
|
||
# Compare training & validation errors | ||
(comparison <- (rf_res - rf_test_res) * 100) | ||
summary(comparison) | ||
hist(comparison$OOB) # mostly < 1 | ||
hist(comparison$error_rate_0, breaks = 10) # mostly < 1 | ||
hist(comparison$error_rate_1, breaks = 20) # some extremes | ||
cor(rf_res[,-1], rf_test_res[,-1]) # correlations of 0.999, 0.999 and 0.982 | ||
|
||
## Training on full dataset | ||
system.time( | ||
full_models <- pblapply(spe, function(x) ranger_train(x, vars)) | ||
) | ||
full_models | ||
|
||
# Combine results in dataframe | ||
rf_full_res <- data.frame(species = colnames(spe), | ||
OOB = sapply(full_models, function(x) x$prediction.error), | ||
error_rate_0 = sapply(full_models, function(x) x$confusion.matrix[3]/sum(x$confusion.matrix[c(1,3)])), | ||
error_rate_1 = sapply(full_models, function(x) x$confusion.matrix[2]/sum(x$confusion.matrix[c(2,4)])) | ||
) | ||
|
||
# Compare full training with 70% training | ||
(full_comparison <- (rf_res - rf_full_res[-60,]) * 100) | ||
summary(full_comparison) # not much prediction gain | ||
hist(full_comparison$OOB, breaks = 20) # mostly < 1 | ||
hist(full_comparison$error_rate_0, breaks = 20) # mostly < 1 | ||
hist(full_comparison$error_rate_1, breaks = 20) # some extremes | ||
cor(rf_res[,-1], rf_full_res[-60,-1]) |
Oops, something went wrong.